Skip to main content

Advertisement

Log in

Associations between obesity, diabetes mellitus, and cardiovascular disease with progression states of knee osteoarthritis (KOA)

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Data on common comorbidities targeting at different progression states of knee osteoarthritis (KOA) in continuous time are limited.

Aims

To examine the associations between obesity, diabetes mellitus (DM), and cardiovascular disease (CVD) with the progression of KOA.

Methods

Data were obtained from the Osteoarthritis Initiative for up to 48 months. Progression states of KOA were defined as (1) normal; (2) asymptomatic radiographic KOA (RKOA, Kellgren–Lawrence grade ≥ 2 in at least one knee); (3) only knee symptoms; (4) symptomatic KOA (SxKOA, a combination of RKOA and knee symptoms in the same knee). A multi-state Markov model was used to investigate the associations while accounting for potential confounders.

Results

Participants with obesity had an increased risk of developing RKOA [normal to asymptomatic RKOA, adjusted hazard ratio (aHR) 1.55, 95% confidence interval (95% CI) (1.07, 2.24); only knee symptoms to SxKOA, aHR 2.25, 95% CI (1.60, 3.18)], and an increased risk of developing knee symptoms [normal to only knee symptoms, aHR 1.45, 95% CI (1.15, 1.83); asymptomatic RKOA to SxKOA, aHR 1.33, 95% CI (1.16, 1.52)]. DM was also significantly associated with development of RKOA or knee symptoms [normal to asymptomatic RKOA, aHR 1.92, 95% CI (1.12, 3.30); normal to only knee symptoms, aHR 1.78, 95% CI (1.12, 2.84)]. Knee symptoms were less likely to be relieved among participants with CVD, compared with those without [only knee symptoms to normal, aHR 0.60, 95% CI (0.38, 0.94)].

Conclusions

Obesity, DM and CVD are associated with an increased risk for SxKOA progression. Common comorbidities should be considered to prevent KOA development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available in the OAI repository, https://nda.nih.gov/oai.

References

  1. Hunter DJ, Bierma-Zeinstra S (2019) Osteoarthritis. Lancet 393:1745–1759. https://doi.org/10.1016/s0140-6736(19)30417-9

    Article  CAS  Google Scholar 

  2. GBD (2019) Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/s0140-6736(20)30925-9

    Article  Google Scholar 

  3. Long H, Liu Q, Yin H et al (2022) Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol 74:1172–1183. https://doi.org/10.1002/art.42089

    Article  Google Scholar 

  4. Silverwood V, Blagojevic-Bucknall M, Jinks C et al (2015) Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthr Cartil 23:507–515. https://doi.org/10.1016/j.joca.2014.11.019

    Article  CAS  Google Scholar 

  5. Zhang Y, Jordan JM (2008) Epidemiology of osteoarthritis. Rheum Dis Clin North Am 34:515–529. https://doi.org/10.1016/j.rdc.2008.05.007

    Article  Google Scholar 

  6. Ezzat AM, Li LC (2014) Occupational physical loading tasks and knee osteoarthritis: a review of the evidence. Physiother Can 66:91–107. https://doi.org/10.3138/ptc.2012-45BC

    Article  Google Scholar 

  7. Young DA, Barter MJ, Soul J (2022) Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthr Cartil 30:216–225. https://doi.org/10.1016/j.joca.2021.11.004

    Article  CAS  Google Scholar 

  8. Urban H, Little CB (2018) The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology (Oxford) 57:10–21. https://doi.org/10.1093/rheumatology/kex399

    Article  CAS  Google Scholar 

  9. Courties A, Gualillo O, Berenbaum F et al (2015) Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthr Cartil 23:1955–1965. https://doi.org/10.1016/j.joca.2015.05.016

    Article  CAS  Google Scholar 

  10. Louati K, Vidal C, Berenbaum F et al (2015) Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open 1:e000077. https://doi.org/10.1136/rmdopen-2015-000077

    Article  Google Scholar 

  11. Khor A, Ma CA, Hong C et al (2020) Diabetes mellitus is not a risk factor for osteoarthritis. RMD Open. https://doi.org/10.1136/rmdopen-2019-001030

    Article  Google Scholar 

  12. Waine H, Nevinny D, Rosenthal J et al (1961) Association of osteoarthritis and diabetes mellitus. Tufts Folia Med 7:13–19

    CAS  Google Scholar 

  13. Berenbaum F (2011) Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. Ann Rheum Dis 70:1354–1356. https://doi.org/10.1136/ard.2010.146399

    Article  Google Scholar 

  14. Zhuo Q, Yang W, Chen J et al (2012) Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol 8:729–737. https://doi.org/10.1038/nrrheum.2012.135

    Article  CAS  Google Scholar 

  15. Fernandes GS, Valdes AM (2015) Cardiovascular disease and osteoarthritis: common pathways and patient outcomes. Eur J Clin Invest 45:405–414. https://doi.org/10.1111/eci.12413

    Article  Google Scholar 

  16. Meira-Machado L, de Uña-Alvarez J, Cadarso-Suárez C et al (2009) Multi-state models for the analysis of time-to-event data. Stat Methods Med Res 18:195–222. https://doi.org/10.1177/0962280208092301

    Article  Google Scholar 

  17. Kinoshita F, Yokota I, Mieno H et al (2021) Multi-state model for predicting ocular progression in acute Stevens-Johnson syndrome/toxic epidermal necrolysis. PLoS ONE 16:e0260730. https://doi.org/10.1371/journal.pone.0260730

    Article  CAS  Google Scholar 

  18. Eckstein F, Wirth W, Nevitt MC (2012) Recent advances in osteoarthritis imaging–the osteoarthritis initiative. Nat Rev Rheumatol 8:622–630. https://doi.org/10.1038/nrrheum.2012.113

    Article  CAS  Google Scholar 

  19. Lester. MCNDTFG (2017) The osteoarthritis initiative. Protocol for the cohort study. https://nda.nih.gov/static/docs/StudyDesignProtocolAndAppendices.pdf

  20. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16:494–502. https://doi.org/10.1136/ard.16.4.494

    Article  CAS  Google Scholar 

  21. Felson DT, McAlindon TE, Anderson JJ et al (1997) Defining radiographic osteoarthritis for the whole knee. Osteoarthr Cartil 5:241–250. https://doi.org/10.1016/s1063-4584(97)80020-9

    Article  CAS  Google Scholar 

  22. Sheehy L, Culham E, McLean L et al (2015) Validity and sensitivity to change of three scales for the radiographic assessment of knee osteoarthritis using images from the Multicenter Osteoarthritis Study (MOST). Osteoarthr Cartil 23:1491–1498. https://doi.org/10.1016/j.joca.2015.05.003

    Article  CAS  Google Scholar 

  23. Martin KA, Rejeski WJ, Miller ME et al (1999) Validation of the PASE in older adults with knee pain and physical disability. Med Sci Sports Exerc 31:627–633. https://doi.org/10.1097/00005768-199905000-00001

    Article  CAS  Google Scholar 

  24. Yu HM, Yang SS, Gao JW et al (2013) Multi-state Markov model in outcome of mild cognitive impairments among community elderly residents in Mainland China. Int Psychogeriatr 25:797–804. https://doi.org/10.1017/s1041610212002220

    Article  Google Scholar 

  25. Jackson CH (2011) Multi-state models for panel data: the MSM package for R. J Stat Softw 38:1–28

    Article  Google Scholar 

  26. Golightly YM, Alvarez C, Arbeeva LS et al (2021) Associations of comorbid conditions and transitions across states of knee osteoarthritis in a community-based cohort. ACR Open Rheumatol 3:512–521. https://doi.org/10.1002/acr2.11287

    Article  Google Scholar 

  27. Muraki S, Akune T, Oka H et al (2012) Incidence and risk factors for radiographic knee osteoarthritis and knee pain in Japanese men and women: a longitudinal population-based cohort study. Arthritis Rheum 64:1447–1456. https://doi.org/10.1002/art.33508

    Article  Google Scholar 

  28. Zhang L, Lin C, Liu Q et al (2021) Incidence and related risk factors of radiographic knee osteoarthritis: a population-based longitudinal study in China. J Orthop Surg Res 16:474. https://doi.org/10.1186/s13018-021-02577-1

    Article  Google Scholar 

  29. Hong JW, Noh JH, Kim DJ (2020) The prevalence of and demographic factors associated with radiographic knee osteoarthritis in Korean adults aged ≥ 50 years: The 2010–2013 Korea National Health and Nutrition Examination Survey. PLoS ONE 15:e0230613. https://doi.org/10.1371/journal.pone.0230613

    Article  CAS  Google Scholar 

  30. Miranda H, Viikari-Juntura E, Martikainen R et al (2002) A prospective study on knee pain and its risk factors. Osteoarthr Cartil 10:623–630. https://doi.org/10.1053/joca.2002.0796

    Article  CAS  Google Scholar 

  31. Ingham SL, Zhang W, Doherty SA et al (2011) Incident knee pain in the Nottingham community: a 12-year retrospective cohort study. Osteoarthr Cartil 19:847–852. https://doi.org/10.1016/j.joca.2011.03.012

    Article  CAS  Google Scholar 

  32. Pottie P, Presle N, Terlain B et al (2006) Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis 65:1403–1405. https://doi.org/10.1136/ard.2006.061994

    Article  CAS  Google Scholar 

  33. Kulkarni K, Karssiens T, Kumar V et al (2016) Obesity and osteoarthritis. Maturitas 89:22–28. https://doi.org/10.1016/j.maturitas.2016.04.006

    Article  Google Scholar 

  34. Rahman MM, Kopec JA, Anis AH et al (2013) Risk of cardiovascular disease in patients with osteoarthritis: a prospective longitudinal study. Arthritis Care Res 65:1951–1958. https://doi.org/10.1002/acr.22092

    Article  Google Scholar 

  35. Veronese N, Trevisan C, De Rui M et al (2016) Association of osteoarthritis with increased risk of cardiovascular diseases in the elderly: findings from the Progetto Veneto Anziano study cohort. Arthritis Rheumatol 68:1136–1144. https://doi.org/10.1002/art.39564

    Article  CAS  Google Scholar 

  36. Veronese N, Stubbs B, Solmi M et al (2018) Osteoarthritis increases the risk of cardiovascular disease: data from the osteoarthritis initiative. J Nutr Health Aging 22:371–376. https://doi.org/10.1007/s12603-017-0941-0

    Article  CAS  Google Scholar 

  37. Atiquzzaman M, Karim ME, Kopec J et al (2019) Role of nonsteroidal antiinflammatory drugs in the association between osteoarthritis and cardiovascular diseases: a longitudinal study. Arthritis Rheumatol (Hoboken, NJ) 71:1835–1843. https://doi.org/10.1002/art.41027

    Article  CAS  Google Scholar 

  38. Williams MF, London DA, Husni EM et al (2016) Type 2 diabetes and osteoarthritis: a systematic review and meta-analysis. J Diabetes Complicat 30:944–950. https://doi.org/10.1016/j.jdiacomp.2016.02.016

    Article  Google Scholar 

  39. Rogers-Soeder TS, Lane NE, Walimbe M et al (2020) Association of diabetes mellitus and biomarkers of abnormal glucose metabolism with incident radiographic knee osteoarthritis. Arthritis Care Res 72:98–106. https://doi.org/10.1002/acr.23809

    Article  CAS  Google Scholar 

  40. Kuusalo L, Felson DT, Wang N et al (2021) Metabolic osteoarthritis—relation of diabetes and cardiovascular disease with knee osteoarthritis. Osteoarthr Cartil 29:230–234. https://doi.org/10.1016/j.joca.2020.09.010

    Article  CAS  Google Scholar 

  41. Eitner A, Culvenor AG, Wirth W et al (2021) Impact of diabetes mellitus on knee osteoarthritis pain and physical and mental status: data from the osteoarthritis initiative. Arthritis Care Res 73:540–548. https://doi.org/10.1002/acr.24173

    Article  Google Scholar 

  42. Alenazi AM, Alshehri MM, Alothman S et al (2020) The association of diabetes with knee pain locations, pain while walking, and walking speed: data from the osteoarthritis initiative. Phys Ther 100:1977–1986. https://doi.org/10.1093/ptj/pzaa144

    Article  Google Scholar 

  43. Rahman MM, Cibere J, Anis AH et al (2014) Risk of type 2 diabetes among osteoarthritis patients in a prospective longitudinal study. Int J Rheumatol 2014:620920. https://doi.org/10.1155/2014/620920

    Article  Google Scholar 

  44. Alenazi AM, Alothman S, Alshehri MM et al (2019) The prevalence of type 2 diabetes and associated risk factors with generalized osteoarthritis: a retrospective study using ICD codes for clinical data repository system. Clin Rheumatol 38:3539–3547. https://doi.org/10.1007/s10067-019-04712-0

    Article  Google Scholar 

  45. Mork PJ, Holtermann A, Nilsen TI (2012) Effect of body mass index and physical exercise on risk of knee and hip osteoarthritis: longitudinal data from the Norwegian HUNT Study. J Epidemiol Community Health 66:678–683. https://doi.org/10.1136/jech-2011-200834

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Osteoarthritis Initiative (OAI) participants, investigators, and Clinical Center’s staff for generating this publicly available dataset.

Funding

This work was supported by the Beijing Postdoctoral Research Foundation of China (Grant number: 2021-ZZ-010). The funders had no role in the study design, data collection and analysis, interpretation of data, manuscript writing, or decision to submit.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Study conception and design (HBL, HYY, RQC, FY, AG); acquisition of data (HBL); analysis and interpretation of data (HBL, HYY, RQC, FY, AG).

Corresponding authors

Correspondence to Fei Yu or Ai Guo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest relevant to this work.

Ethics approval and informed consent

The OAI was approved and meets all criteria for ethical standards regarding human and animal studies defined in the Declaration of Helsinki. Institutional review boards at each OAI clinical site and the OAI coordinating center (University of California, San Francisco) approved the OAI study (approval number 10-00532). Informed consent was obtained from all participants. No further ethical approval was required for the analyses of these anonymized patient-level data in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, H., Cao, R., Yin, H. et al. Associations between obesity, diabetes mellitus, and cardiovascular disease with progression states of knee osteoarthritis (KOA). Aging Clin Exp Res 35, 333–340 (2023). https://doi.org/10.1007/s40520-022-02312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-022-02312-8

Keywords

Navigation