Skip to main content

Advertisement

Log in

Inflammatory markers in postoperative cognitive dysfunction for patients undergoing total hip arthroplasty: a meta-analysis

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

This article has been updated

Abstract

Background

Postoperative cognitive dysfunction (POCD) is a poorly understood disorder, very common even after total hip arthroplasty (THA). It is widely considered that inflammation response play a role in the pathogenesis of POCD.

Aims

The aim of the present study was to investigate whether inflammation cytokine concentrations could serve as biomarkers for POCD in patients undergoing THA.

Methods

A systematic search of databases was conducted to retrieve publications measuring circulating inflammatory markers of patients with and without POCD after THA. Inflammatory markers identified in more than two studies were pooled. The standardized mean difference (SMD) and the 95% confidence interval (95% CI) were calculated for each outcome. Fail-safe N statistics was calculated to estimate possible publication bias.

Results

The pooled incidence rate of POCD after THA by combining 11 cohort studies was 31%. A total of five inflammatory markers, CRP, S-100B, IL-1β, IL-6 and TNF-α, were assessed. Significantly higher pre-operative CRP (P = 0.012) and S-100B (P < 0.0001) as well as post-operative CPR (P = 0.005) and IL-6 (P < 0.0001) at 6 h were found in POCD compared with non-POCD patients undergoing THA. Fail-safe N statistics revealed that these results are robust.

Discussion

The current evidence suggests that some of the inflammatory markers, including CRP, S-100B, and IL-6, were correlated with the occurrence of POCD after THA.

Conclusion

Monitor of inflammatory markers might help early diagnosis of POCD after THA and development of preventive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

Change history

  • 03 February 2022

    article category has been updated.

References

  1. Pivec R, Johnson AJ, Mears SC et al (2012) Hip arthroplasty. Lancet 380:1768–1777. https://doi.org/10.1016/s0140-6736(12)60607-2

    Article  PubMed  Google Scholar 

  2. Monk TG, Weldon BC, Garvan CW et al (2008) Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108:18–30. https://doi.org/10.1097/01.anes.0000296071.19434.1e

    Article  PubMed  Google Scholar 

  3. Evered L, Scott DA, Silbert B et al (2011) Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg 112:1179–1185. https://doi.org/10.1213/ANE.0b013e318215217e

    Article  PubMed  Google Scholar 

  4. Daiello LA, Racine AM, Yun Gou R et al (2019) Postoperative delirium and postoperative cognitive dysfunction: overlap and divergence. Anesthesiology 131:477–491. https://doi.org/10.1097/aln.0000000000002729

    Article  PubMed  Google Scholar 

  5. Steinmetz J, Christensen KB, Lund T et al (2009) Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 110:548–555. https://doi.org/10.1097/ALN.0b013e318195b569

    Article  PubMed  Google Scholar 

  6. Monk TG, Price CC (2011) Postoperative cognitive disorders. Curr Opin Crit Care 17:376–381. https://doi.org/10.1097/MCC.0b013e328348bece

    Article  PubMed  Google Scholar 

  7. Xiao QX, Liu Q, Deng R et al (2020) Postoperative cognitive dysfunction in elderly patients undergoing hip arthroplasty. Psychogeriatrics 20:501–509. https://doi.org/10.1111/psyg.12516

    Article  PubMed  Google Scholar 

  8. Robert C, Soulier A, Sciard D et al (2021) Cognitive status of patients judged fit for discharge from the post-anaesthesia care unit after general anaesthesia: a randomized comparison between desflurane and propofol. BMC Anesthesiol 21:76. https://doi.org/10.1186/s12871-021-01287-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uzoigwe CE, O’Leary L, Nduka J et al (2020) Factors associated with delirium and cognitive decline following hip fracture surgery. Bone Joint J 102-b:1675–1681. https://doi.org/10.1302/0301-620x.102b12.Bjj-2019-1537.R3

    Article  PubMed  Google Scholar 

  10. Cibelli M, Fidalgo AR, Terrando N et al (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68:360–368. https://doi.org/10.1002/ana.22082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Terrando N, Monaco C, Feldmann M et al (2010) Unraveling the interactions between postoperative infection, surgery, and inflammation in post-operative cognitive dysfunction. Eur J Anaesthesiol 27:1–2

    Article  Google Scholar 

  12. Fidalgo AR, Cibelli M, White JP et al (2011) Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci Lett 498:63–66. https://doi.org/10.1016/j.neulet.2011.04.063

    Article  CAS  PubMed  Google Scholar 

  13. Vacas S, Degos V, Feng X et al (2013) The neuroinflammatory response of postoperative cognitive decline. Br Med Bull 106:161–178. https://doi.org/10.1093/bmb/ldt006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Terrando N, Monaco C, Ma D et al (2010) Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 107:20518–20522. https://doi.org/10.1073/pnas.1014557107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition–the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50:2041–2056. https://doi.org/10.1046/j.1532-5415.2002.50619.x

    Article  PubMed  Google Scholar 

  16. Cormack F, Shipolini A, Awad WI et al (2012) A meta-analysis of cognitive outcome following coronary artery bypass graft surgery. Neurosci Biobehav Rev 36:2118–2129. https://doi.org/10.1016/j.neubiorev.2012.06.002

    Article  PubMed  Google Scholar 

  17. Dunkel A, Kendel F, Lehmkuhl E et al (2009) Predictors of preoperative depressive risk in patients undergoing coronary artery bypass graft surgery. Clin Res Cardiol 98:643–650. https://doi.org/10.1007/s00392-009-0050-0

    Article  PubMed  Google Scholar 

  18. Liu X, Yu Y, Zhu S (2018) Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a meta-analysis of observational studies. PLoS ONE 13:e0195659. https://doi.org/10.1371/journal.pone.0195659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  20. Higgins JPT, Li T, Deeks J (2020) Chapter 6: choosing effect measures and computing estimates of effect. Cochrane: Cochrane handbook for systematic reviews of interventions version 6.1. Wiley, New Jersey ((updated September 2020))

    Google Scholar 

  21. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  22. Lipsey MW, Wilson DB (2001) Practical meta-analysis. Sage Publications Inc, Thousand Oaks

    Google Scholar 

  23. Shu D, Rong LP, Jiang J (2006) Efects of nitroprusside induced hypotension on cognitive function after total hip replacement in geriatric patients. Int J Anesth Resusc 27:152–154

    Google Scholar 

  24. Feng DG, Wang YQ, Wang XL et al (2018) Correlation between the levels of serum CRP and ESR and the cognitive function in elderly patients with total hip arthroplasty. J Chengdu Med Coll 13:319–322

    Google Scholar 

  25. Ji X, Sun C, Li X et al (2016) Baseline S100B protein as a potential predicator for postoperative cognitive dysfunction in elderly patients after hip joint replacement surgery. Int J Clin Exp Pathol 9:11911–11916

    CAS  Google Scholar 

  26. Li YC, Xi CH, An YF et al (2012) Perioperative inflammatory response and protein S-100β concentrations—relationship with post-operative cognitive dysfunction in elderly patients. Acta Anaesthesiol Scand 56:595–600. https://doi.org/10.1111/j.1399-6576.2011.02616.x

    Article  CAS  PubMed  Google Scholar 

  27. Liu QS, Qi XH, Sun DH (2015) Changes of serum C-reactive protein level and early postoperative cognitive function in elderly patients after total hip arthroplasty under different anesthesia methods. Chin J Gerontol 000:509–510

    Google Scholar 

  28. She YJ, Dong L, Xing CH et al (2014) Changes of serum cytokines in elderly patients with cognitive impairment after hip replacement. Jiangsu Med J 40:234–235

    CAS  Google Scholar 

  29. Wu TH (2014) Correlation between postoperative cognitive dysfunction and perioperative inflammatory response in early total hip replacement. Anhui Med J 35:1106–1108

    Google Scholar 

  30. Yang CM, Wang LL, Chao K et al (2015) Relationship between inflammatory reaction and early postoperative cognitive dysfunction in elderly patients undergoing total hip arthroplasty. J Chin Physician 17:1720–1722

    CAS  Google Scholar 

  31. Yuan HM, Li XM, Xu SX (2012) Association of molecular biomarkers in cerebrospinal fluid and serum with early postoperative cognitive dysfunction in the elderly. Jiangsu Med J 38:2826–2828

    CAS  Google Scholar 

  32. Zhang H, Zheng J, Wang R et al (2019) Serum phosphorylated neurofilament heavy subunit-H, a potential predictive biomarker for postoperative cognitive dysfunction in elderly subjects undergoing hip joint arthroplasty. J Arthroplasty 34:1602–1605. https://doi.org/10.1016/j.arth.2019.03.073

    Article  PubMed  Google Scholar 

  33. Zhang L, Fang MB, Zheng JG et al (2019) The effect of β2-MG on cognitive function after hip replacement. Modern Pract Med 031:749–751

    Google Scholar 

  34. Lin R, Zhang F, Xue Q et al (2013) Accuracy of regional cerebral oxygen saturation in predicting postoperative cognitive dysfunction after total hip arthroplasty: regional cerebral oxygen saturation predicts POCD. J Arthroplasty 28:494–497. https://doi.org/10.1016/j.arth.2012.06.041

    Article  PubMed  Google Scholar 

  35. Scott JE, Mathias JL, Kneebone AC (2014) Postoperative cognitive dysfunction after total joint arthroplasty in the elderly: a meta-analysis. J Arthroplasty 29:261-267.e261. https://doi.org/10.1016/j.arth.2013.06.007

    Article  PubMed  Google Scholar 

  36. Weiser TG, Regenbogen SE, Thompson KD et al (2008) An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372:139–144. https://doi.org/10.1016/s0140-6736(08)60878-8

    Article  PubMed  Google Scholar 

  37. Etzioni DA, Liu JH, Maggard MA et al (2003) The aging population and its impact on the surgery workforce. Ann Surg 238:170–177. https://doi.org/10.1097/01.SLA.0000081085.98792.3d

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213. https://doi.org/10.1016/j.bbi.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  39. Beloosesky Y, Hendel D, Weiss A et al (2007) Cytokines and C-reactive protein production in hip-fracture-operated elderly patients. J Gerontol A Biol Sci Med Sci 62:420–426. https://doi.org/10.1093/gerona/62.4.420

    Article  PubMed  Google Scholar 

  40. Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at Sites of inflammation and infection. Front Immunol 9:754. https://doi.org/10.3389/fimmu.2018.00754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang D, Sun M, Samols D et al (1996) STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J Biol Chem 271:9503–9509. https://doi.org/10.1074/jbc.271.16.9503

    Article  CAS  PubMed  Google Scholar 

  42. Popa C, Netea MG, van Riel PL et al (2007) The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 48:751–762. https://doi.org/10.1194/jlr.R600021-JLR200

    Article  CAS  PubMed  Google Scholar 

  43. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167. https://doi.org/10.1038/nri2015

    Article  CAS  PubMed  Google Scholar 

  44. Herrmann M, Curio N, Jost S et al (1999) Protein S-100B and neuron specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. Restor Neurol Neurosci 14:109–114

    CAS  PubMed  Google Scholar 

  45. Barrientos RM, Hein AM, Frank MG et al (2012) Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci 32:14641–14648. https://doi.org/10.1523/jneurosci.2173-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mori T, Koyama N, Arendash GW et al (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 58:300–314. https://doi.org/10.1002/glia.20924

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jones SA (2005) Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 175:3463–3468. https://doi.org/10.4049/jimmunol.175.6.3463

    Article  CAS  PubMed  Google Scholar 

  48. Cao XZ, Ma H, Wang JK et al (2010) Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats. Prog Neuropsychopharmacol Biol Psychiatry 34:1426–1432. https://doi.org/10.1016/j.pnpbp.2010.07.027

    Article  CAS  PubMed  Google Scholar 

  49. Späth-Schwalbe E, Hansen K, Schmidt F et al (1998) Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab 83:1573–1579. https://doi.org/10.1210/jcem.83.5.4795

    Article  PubMed  Google Scholar 

  50. Venters HD, Dantzer R, Kelley KW (2000) Tumor necrosis factor-alpha induces neuronal death by silencing survival signals generated by the type I insulin-like growth factor receptor. Ann N Y Acad Sci 917:210–220. https://doi.org/10.1111/j.1749-6632.2000.tb05385.x

    Article  CAS  PubMed  Google Scholar 

  51. Yang G, Parkhurst CN, Hayes S et al (2013) Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 110:10306–10311. https://doi.org/10.1073/pnas.1222895110

    Article  PubMed  PubMed Central  Google Scholar 

  52. Teng Y, Zhang MQ, Wang W et al (2014) Compound danshen tablet ameliorated aβ25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins. BMC Complement Altern Med 14:23. https://doi.org/10.1186/1472-6882-14-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Inatsu A, Kinoshita M, Nakashima H et al (2009) Novel mechanism of C-reactive protein for enhancing mouse liver innate immunity. Hepatology 49:2044–2054. https://doi.org/10.1002/hep.22888

    Article  CAS  PubMed  Google Scholar 

  54. Zhang NN, Sun L, Chen WT et al (2020) Effects of edaravone on postoperative cognitive function in elderly patients undergoing hip joint replacement surgery: a randomized controlled trial. Int J Surg 80:13–18. https://doi.org/10.1016/j.ijsu.2020.05.092

    Article  PubMed  Google Scholar 

  55. Sun D, Yang L, Wu Y et al (2014) Effect of intravenous infusion of dobutamine hydrochloride on the development of early postoperative cognitive dysfunction in elderly patients via inhibiting the release of tumor necrosis factor-α. Eur J Pharmacol 741:150–155. https://doi.org/10.1016/j.ejphar.2014.07.055

    Article  CAS  PubMed  Google Scholar 

  56. Xu Y, Du X (2020) Application of dexmedetomidine-assisted intravertebral anesthesia in hip replacement and its influence on T-lymphocyte subsets. Exp Ther Med 20:1269–1276. https://doi.org/10.3892/etm.2020.8869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hovaguimian F, Tschopp C, Beck-Schimmer B et al (2018) Intraoperative ketamine administration to prevent delirium or postoperative cognitive dysfunction: a systematic review and meta-analysis. Acta Anaesthesiol Scand 62:1182–1193. https://doi.org/10.1111/aas.13168

    Article  CAS  PubMed  Google Scholar 

  58. Rudolph JL, Ramlawi B, Kuchel GA et al (2008) Chemokines are associated with delirium after cardiac surgery. J Gerontol A Biol Sci Med Sci 63:184–189. https://doi.org/10.1093/gerona/63.2.184

    Article  PubMed  Google Scholar 

  59. Peng L, Xu L, Ouyang W (2013) Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS ONE 8:e79624. https://doi.org/10.1371/journal.pone.0079624

    Article  PubMed  PubMed Central  Google Scholar 

  60. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  61. Hanning CD (2005) Postoperative cognitive dysfunction. Br J Anaesth 95:82–87. https://doi.org/10.1093/bja/aei062

    Article  CAS  PubMed  Google Scholar 

  62. Huang C, Mårtensson J, Gögenur I et al (2018) Exploring postoperative cognitive dysfunction and delirium in noncardiac surgery using MRI: a systematic review. Neural Plast 2018:1281657. https://doi.org/10.1155/2018/1281657

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rudolph JL, Schreiber KA, Culley DJ et al (2010) Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand 54:663–677. https://doi.org/10.1111/j.1399-6576.2010.02236.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by 2018 Annual Shantou Science and Technology Plan Project, Shan Fuke [2018] No. 120

Author information

Authors and Affiliations

Authors

Contributions

GLG and CMF conceived and designed the analysis; WBZ, HBC, and XWL acquired the data; JCL and GLG analyzed and interpreted the data; CMF drafted and revised the article; all author contributed to the final approval of the manuscript.

Corresponding author

Correspondence to Guoliang Gong.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Lin, J., Gong, G. et al. Inflammatory markers in postoperative cognitive dysfunction for patients undergoing total hip arthroplasty: a meta-analysis. Aging Clin Exp Res 34, 277–288 (2022). https://doi.org/10.1007/s40520-021-01919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-021-01919-7

Keywords

Navigation