Skip to main content

Advertisement

Log in

A double-blind randomized controlled trial combining cognitive training (CoRe) and neurostimulation (tDCS) in the early stages of cognitive impairment

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

The prevalence of neurodegenerative diseases is expected to increase over the next years, therefore, new methods able to prevent and delay cognitive decline are needed.

Aims

To evaluate the effectiveness of a combined treatment protocol associating a computerized cognitive training (CoRe) with anodal transcranial direct current stimulation (tDCS).

Methods

In this randomized controlled trial, 33 patients in the early stage of cognitive impairment were assigned to the experimental group (CoRE + real tDCS) or control group (CoRE + sham tDCS). In each group, the intervention lasted 3 consecutive weeks (4 sessions/week). A neuropsychological assessment was administered at baseline (T0), post-intervention (T1) and 6-months later (T2).

Results

The CoRE + real tDCS group only improved in working memory and attention/processing speed at both T1 and T2. It reported a stable MMSE score at T2, while the CoRE + sham tDCS group worsened. Age, mood, and T0 MMSE score resulted to play a role in predicting treatment effects.

Conclusion

Combined multi-domain interventions may contribute to preventing or delaying disease progression.

Trial registration

Trial registration number (ClinicalTrials.gov): NCT04118686

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: [Zenodo; Reservation https://doi.org/10.5281/zenodo.4498051].

References

  1. Petersen RC, Smith GE, Waring SC et al (1997) Aging, memory, and mild cognitive impairment. Int Psychogeriatrics 9:65–69. https://doi.org/10.1017/s1041610297004717

    Article  Google Scholar 

  2. Rosebud Roberts DSK (2013) Classification and epidemiology of MCI. Clin Geriatr Med 29:1–19. https://doi.org/10.1016/j.cger.2013.07.003.Classification

    Article  Google Scholar 

  3. Sanford AM (2017) Mild cognitive impairment. Clin Geriatr Med 33:325–337. https://doi.org/10.1016/j.cger.2017.02.005

    Article  PubMed  Google Scholar 

  4. Ferrari C, Lombardi G, Polito C et al (2017) Alzheimer’s disease progression: factors influencing cognitive decline. J Alzheimers Dis 61:785–791. https://doi.org/10.3233/JAD-170665

    Article  Google Scholar 

  5. Tschanz JT, Corcoran CD, Schwartz S et al (2011) Progression of cognitive, functional, and neuropsychiatric symptom domains in a population cohort with alzheimer dementia: the cache county dementia progression study. Am J Geriatr Psychiatry 19:532–542. https://doi.org/10.1097/JGP.0b013e3181faec23

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cortes F, Nourhashémi F, Guérin O et al (2008) Prognosis of Alzheimer’s disease today: a two-year prospective study in 686 patients from the REAL-FR Study. Alzheimer’s Dement 4:22–29. https://doi.org/10.1016/j.jalz.2007.10.018

    Article  Google Scholar 

  7. Hill NTM, Mowszowski L, Naismith SL et al (2017) Computerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. Am J Psychiatry 174:329–340. https://doi.org/10.1176/appi.ajp.2016.16030360

    Article  PubMed  Google Scholar 

  8. Hsu W-Y, Ku Y, Zanto TP et al (2015) Effects of non-invasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol Aging 36:2348–2359. https://doi.org/10.1016/j.neurobiolaging.2015.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alloni A, Quaglini S, Panzarasa S et al (2018) Evaluation of an ontology-based system for computerized cognitive rehabilitation. Int J Med Inform 115:64–72. https://doi.org/10.1016/j.ijmedinf.2018.04.005

    Article  PubMed  Google Scholar 

  10. Alloni A, Sinforiani E, Zucchella C et al (2017) Computer-based cognitive rehabilitation: the CoRe system. Disabil Rehabil 39:407–417. https://doi.org/10.3109/09638288.2015.1096969

    Article  PubMed  Google Scholar 

  11. Bernini S, Alloni A, Panzarasa S et al (2019) A computer-based cognitive training in mild cognitive impairment in Parkinson’s disease. NeuroRehabilitation 44:555–567. https://doi.org/10.3233/nre-192714

    Article  PubMed  Google Scholar 

  12. Bernini S, Panzarasa S, Barbieri M et al (2020) A double-blind randomized controlled trial of the efficacy of cognitive training delivered using two different methods in mild cognitive impairment in Parkinson’s disease: preliminary report of benefits associated with the use of a computerized tool. Aging Clin Exp Res. https://doi.org/10.1007/s40520-020-01665-2

    Article  PubMed  Google Scholar 

  13. Takeuchi H, Taki Y, Kawashima R (2010) Effects of working memory training on cognitive functions and neural systems. Rev Neurosci. https://doi.org/10.1515/REVNEURO.2010.21.6.427

    Article  PubMed  Google Scholar 

  14. Huckans M, Hutson L, Twamley E et al (2013) Efficacy of cognitive rehabilitation therapies for mild cognitive impairment (MCI) in older adults: working toward a theoretical model and evidence-based interventions. Neuropsychol Rev 23:63–80. https://doi.org/10.1007/s11065-013-9230-9.Efficacy

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilson BA (2002) Towards a comprehensive model of cognitive rehabilitation. Neuropsychol Rehabil 12:97–110. https://doi.org/10.1080/09602010244000020

    Article  Google Scholar 

  16. Kuo MF, Paulus W, Nitsche Ma (2014) Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 85:948–960. https://doi.org/10.1016/j.neuroimage.2013.05.117

    Article  PubMed  Google Scholar 

  17. Nardone R, Bergmann J, Christova M et al (2012) Effect of transcranial brain stimulation for the treatment of Alzheimer disease: a review. Int J Alzheimers Dis. https://doi.org/10.1155/2012/687909

    Article  PubMed  Google Scholar 

  18. Fertonani A, Miniussi C (2017) Transcranial electrical stimulation: what we know and do not know about mechanisms. Neurosci. https://doi.org/10.1177/1073858416631966

    Article  Google Scholar 

  19. Meinzer M, Lindenberg R, Antonenko D et al (2013) Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J Neurosci 33:12470–12478. https://doi.org/10.1523/JNEUROSCI.5743-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meinzer M, Lindenberg R, Phan MT et al (2015) Transcranial direct current stimulation in mild cognitive impairment: behavioral effects and neural mechanisms. Alzheimers Dement 11:1–9. https://doi.org/10.1016/j.jalz.2014.07.159

    Article  Google Scholar 

  21. Cotelli M, Manenti R, Zanetti O et al (2012) Non-pharmacological intervention for memory decline. Front Hum Neurosci 6:1–17. https://doi.org/10.3389/fnhum.2012.00046

    Article  Google Scholar 

  22. Prehn K, Flöel A (2015) Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Front Cell Neurosci 9:355. https://doi.org/10.3389/fncel.2015.00355

    Article  PubMed  PubMed Central  Google Scholar 

  23. Antonenko D, Schubert F, Bohm F et al (2017) tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults. J Neurosci 37:0079–0117. https://doi.org/10.1523/JNEUROSCI.0079-17.2017

    Article  Google Scholar 

  24. Miniussi C, Vallar G (2011) Brain stimulation and behavioural cognitive rehabilitation: a new tool for neurorehabilitation? Neuropsychol Rehabil 21:553–559. https://doi.org/10.1080/09602011.2011.622435

    Article  PubMed  Google Scholar 

  25. Cruz Gonzalez P, Fong KNK, Chung RCK et al (2018) Can transcranial direct-current stimulation alone or combined with cognitive training be used as a clinical intervention to improve cognitive functioning in persons with mild cognitive impairment and dementia? A systematic review and meta-analysis. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2018.00416

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nissim NR, O’Shea A, Indahlastari A et al (2019) Effects of transcranial direct current stimulation paired with cognitive training on functional connectivity of the working memory network in older adults. Front Aging Neurosci 11:1–11. https://doi.org/10.3389/fnagi.2019.00340

    Article  Google Scholar 

  27. Hill AT, Fitzgerald PB, Hoy KE (2016) Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul 9:197–208. https://doi.org/10.1016/j.brs.2015.10.006

    Article  PubMed  Google Scholar 

  28. Cotelli M, Manenti R, Petesi M et al (2014) Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Front Aging Neurosci 6:1–9. https://doi.org/10.3389/fnagi.2014.00038

    Article  Google Scholar 

  29. Das N, Spence JS, Aslan S et al (2019) Cognitive training and transcranial direct current stimulation in mild cognitive impairment: a randomized pilot trial. Front Neurosci 13:1–14. https://doi.org/10.3389/fnins.2019.00307

    Article  Google Scholar 

  30. Rebok GW, Langbaum JBS, Jones RN et al (2013) Memory Training in the ACTIVE Study. J Aging Health 25:21S-42S. https://doi.org/10.1177/0898264312461937

    Article  PubMed  Google Scholar 

  31. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  Google Scholar 

  32. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  Google Scholar 

  33. Magni E, Binetti G, Bianchetti A et al (1996) Mini-mental state examination: a normative study in Italian elderly population. Eur J Neurol 3:198–202. https://doi.org/10.1111/j.1468-1331.1996.tb00423.x

    Article  CAS  Google Scholar 

  34. Spinnler H (1987) Italian standardization and classification of Neuropsychological tests. The Italian group on the neuropsychological study of aging. Ital J Neurol Sci Suppl 8:1–120

    Google Scholar 

  35. Novelli G, Papagno C, Capitani E et al (1986) Tre test clinici di memoria verbale a lungo termine. Taratura su soggetti normali. Arch Neurol Psich Psicol 47:278–296

    Google Scholar 

  36. Carlesimo GA, Caltagirone C, Gainotti G et al (1996) The mental deterioration battery: normative data, diagnositc reliability and qualitative analyses of cognitive impaiment. Eur J Neurol 36:378–384

    Article  CAS  Google Scholar 

  37. Caffarra P, Vezzadini G, Dieci F et al (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–447. https://doi.org/10.1007/s100720200003

    Article  CAS  PubMed  Google Scholar 

  38. Appollonio I, Leone M, Isella V et al (2005) The frontal assessment battery (FAB): normative values in an Italian population sample. Neurol Sci 26:108–116. https://doi.org/10.1007/s10072-005-0443-4

    Article  CAS  PubMed  Google Scholar 

  39. Giovagnoli AR, Del Pesce M, Mascheroni S et al (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 4:305–309

    Article  Google Scholar 

  40. Capitani E, Laiacona M (1997) Composite neuropsychological batteries and demographic correction: standardization based on equivalent scores, with a review of published data. J Clin Exp Neuropsychol 19:795–809. https://doi.org/10.1080/01688639708403761

    Article  CAS  PubMed  Google Scholar 

  41. Lawton M, Brody E (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 3:179–186

    Article  Google Scholar 

  42. Nucci M, Mapelli D, Mondini S (2012) Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging Clin Exp Res 24:218–226. https://doi.org/10.3275/7800

    Article  PubMed  Google Scholar 

  43. Beck AT, Steer RA, Brown GK (2010) BDI-II, Beck Depression Inventory-II. USA, NCS Person, Inc., 1996 (Italian translation: Ghisi M, Flebus GB, Montano A, Sanavio E, Sica CM. Adattamento italiano. Florence, Giunti O.S. Organizzazioni Speciali, 2010)

  44. Apolone G, Mosconi P (1998) The Italian SF-36 health survey. J Clin Epidemiol 51:1025–1036. https://doi.org/10.1016/s0895-4356(98)00094-8

    Article  CAS  PubMed  Google Scholar 

  45. Kaup AR, Mirzakhanian H, Jeste DV et al (2011) A review of the brain structure correlates of successful cognitive aging. J Neuropsychiatr Clin Neurosci 23:6–15. https://doi.org/10.1176/appi.neuropsych.23.1.6

    Article  Google Scholar 

  46. Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423. https://doi.org/10.1016/S1364-6613(03)00197-9

    Article  PubMed  Google Scholar 

  47. Balconi M (2013) Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull 29:381–389. https://doi.org/10.1007/s12264-013-1309-z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629. https://doi.org/10.1016/j.clinph.2006.04.009

    Article  PubMed  Google Scholar 

  49. Vandermeeren Y, Jamart J, Ossemann M (2010) Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neurosci 11:1–10

    Article  Google Scholar 

  50. Stagg CJ, Nitsche Ma (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17:37–53. https://doi.org/10.1177/1073858410386614

    Article  PubMed  Google Scholar 

  51. Krause B, Márquez-Ruiz J, Kadosh RC (2013) The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7:1–4. https://doi.org/10.3389/fnhum.2013.00602

    Article  Google Scholar 

  52. Khedr EM, El Gamal NF, El-Fetoh NA et al (2014) A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Front Aging Neurosci 6:1–12. https://doi.org/10.3389/fnagi.2014.00275

    Article  Google Scholar 

  53. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lee MS, Lee SH, Moon EO et al (2013) Neuropsychological correlates of the P300 in patients with Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatr 40:62–69. https://doi.org/10.1016/j.pnpbp.2012.08.009

    Article  Google Scholar 

  55. Pedroso RV, Fraga FJ, Corazza DI et al (2012) P300 latency and amplitude in Alzheimer’s disease: a systematic review. Braz J Otorhinolaryngol 78:126–132. https://doi.org/10.1590/S1808-86942012000400023

    Article  PubMed  Google Scholar 

  56. Yun K, Song IU, Chung YA (2016) Changes in cerebral glucose metabolism after 3 weeks of noninvasive electrical stimulation of mild cognitive impairment patients. Alzheimers Res Ther 8:49. https://doi.org/10.1186/s13195-016-0218-6

    Article  CAS  Google Scholar 

  57. Alexander GE, Chen K, Pietrini P et al (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatr 159:738–745. https://doi.org/10.1176/appi.ajp.159.5.738

    Article  PubMed  Google Scholar 

  58. Bahar-Fuchs A, Clare L, Woods B (2013) Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database Syst Rev 2013:CD003260

    PubMed Central  Google Scholar 

  59. Boggio P, Khoury L, Martins D et al (2009) Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatr 80:444–4447. https://doi.org/10.1136/jnnp.2007.141853

    Article  CAS  Google Scholar 

  60. Ferrucci R, Mameli F, Guidi I et al (2008) Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71:493–498. https://doi.org/10.1212/01.wnl.0000317060.43722.a3

    Article  CAS  PubMed  Google Scholar 

  61. Lövdén M, Brehmer Y, Li S-C et al (2012) Training-induced compensation versus magnification of individual differences in memory performance. Front Hum Neurosci 6:141. https://doi.org/10.3389/fnhum.2012.00141

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bennett S, Thomas AJ (2014) Depression and dementia: cause, consequence or coincidence? Maturitas 79:184–190. https://doi.org/10.1016/j.maturitas.2014.05.009

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the Italian Ministry of Health (Ricerca Corrente 2017–2019) and from the Italian Ministry of Research (PRIN2015).

Author information

Authors and Affiliations

Authors

Contributions

CR, SBe and SBo: Study conception and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript. All authors: Interpretation of data. SQ and SP: Analysis and interpretation of data. MP: Acquisition of data. ES, EC, TV, and CT: Critical revision of the manuscript for important intellectual content.

Corresponding authors

Correspondence to Claudia Rodella or Sara Bernini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed in accordance with the guidelines of the Declaration of Helsinki. The study was approved by the local ethics committee (San Matteo Hospital, Pavia, Italy).

Informed consent

Written informed consent was collected from all of the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodella, C., Bernini, S., Panzarasa, S. et al. A double-blind randomized controlled trial combining cognitive training (CoRe) and neurostimulation (tDCS) in the early stages of cognitive impairment. Aging Clin Exp Res 34, 73–83 (2022). https://doi.org/10.1007/s40520-021-01912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-021-01912-0

Keywords

Navigation