Knee kinematics of severe medial knee osteoarthritis showed tibial posterior translation and external rotation: a cross-sectional study



Knee osteoarthritis (OA) gradually reduces knee function and limits activities of daily living with age. However, the progression of abnormal kinematics of the knee in knee OA is unclear.


This study aimed to clarify the relationship between stage of knee OA and abnormal knee kinematics and to identify a strategy for prevention of knee OA.


A total of 112 knees of 99 patients (45 men/54 women; 55.9 ± 18.2 years), comprising 28 (27/1) in Kellgren–Lawrence grade 0, 18 (8/10) in grade 1, 27 (2/25) in grade 2, 28 (6/22) in grade 3, and 11 (3/8) in grade 4, were enrolled in this cross-sectional study. In vivo knee kinematics was obtained using a three-dimensional-to-two-dimensional registration technique utilizing CT-based bone models and lateral fluoroscopy during knee extension–flexion in an upright sitting position and squatting.


The external rotation angle of the tibia relative to the femur was greater in grade 3/4 knees than in grade 0/1 knees and tibial posterior translation was greater in grade 3/4 knees than in grade 0–2 knees.


Age-related changes in muscle activity and joint instability are considered to be the cause of these abnormal kinematics.


As the stage of knee OA progresses, there was a tendency toward increasing tibial external rotation and tibial posterior translation during knee extension–flexion in sitting position and squatting. Prevention of the progress of the abnormal knee kinematics may prevent the progression of the knee OA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Clynes MA, Jameson KA, Edwards MH et al (2019) Impact of osteoarthritis on activities of daily living: does joint site matter? Aging Clin Exp Res 31:1049–1056.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    March L, Smith EU, Hoy DG (2014) Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol 28:353–366.

    Article  PubMed  Google Scholar 

  3. 3.

    Yoshimura N, Muraki S, Oka H et al (2009) Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on osteoarthritis/osteoporosis against disability study. J Bone Miner Metab 27:620–628.

    Article  PubMed  Google Scholar 

  4. 4.

    Woods B, Manca A, Weatherly H et al (2017) Cost-effectiveness of adjunct non-pharmacological interventions for osteoarthritis of the knee. PLoS One 12:e0172749.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kamaruzaman H, Kinghorn P, Oppong R (2017) Cost-effectiveness of surgical interventions for the management of osteoarthritis: a systematic review of the literature. BMC Musculoskelet Disord 18:183.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hallén LG, Lindahl O (1966) The “screw-home” movement in the knee-joint. Acta Orthop Scand 37:97–106

    Article  Google Scholar 

  7. 7.

    Johal P, Williams A, Wragg P et al (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech 38:269–276.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Jt Surg Br 82:1189–1195

    CAS  Article  Google Scholar 

  9. 9.

    Koga Y (1998) Three-dimensional knee motion analysis for the pathogenesis knee osteoarthrosis. Biomed Mater Eng 8:197–205

    CAS  PubMed  Google Scholar 

  10. 10.

    van Tunen JAC, Dell’Isola A, Juhl C et al (2018) Association of malalignment, muscular dysfunction, proprioception, laxity and abnormal joint loading with tibiofemoral knee osteoarthritis—a systematic review and meta-analysis. BMC Musculoskelet Disord 19:273.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Peixoto JG, de Souza Moreira B, Diz JBM et al (2019) Analysis of symmetry between lower limbs during gait of older women with bilateral knee osteoarthritis. Aging Clin Exp Res 31:67–73.

    Article  PubMed  Google Scholar 

  12. 12.

    Zeng X, Ma L, Lin Z et al (2017) Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system. Sci Rep 7:4080.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Yoshida S, Aoyagi K, Felson DT et al (2002) Comparison of the prevalence of radiographic osteoarthritis of the knee and hand between Japan and the United States. J Rheumatol 29:1454–1458

    PubMed  Google Scholar 

  14. 14.

    Zhang Y, Xu L, Nevitt MC et al (2001) Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States: the Beijing Osteoarthritis Study. Arthritis Rheum 44:2065–2071.;2-Z

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kono K, Tomita T, Futai K et al (2018) In vivo three-dimensional kinematics of normal knees during different high-flexion activities. Bone Jt J 100-B:50–55.

    CAS  Article  Google Scholar 

  16. 16.

    Qi W, Hosseini A, Tsai TY et al (2013) In vivo kinematics of the knee during weight bearing high flexion. J Biomech 46:1576–1582.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tanifuji O, Sato T, Kobayashi K et al (2011) Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy. J Orthop Sci 16:710–718.

    Article  PubMed  Google Scholar 

  18. 18.

    Saari T, Carlsson L, Karlsson J et al (2005) Knee kinematics in medial arthrosis. Dynamic radiostereometry during active extension and weight-bearing. J Biomech 38:285–292.

    Article  PubMed  Google Scholar 

  19. 19.

    Hamai S, Moro-oka TA, Miura H et al (2009) Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities. J Orthop Res 27:1555–1561.

    Article  PubMed  Google Scholar 

  20. 20.

    Yue B, Varadarajan KM, Moynihan AL et al (2011) Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J Orthop Res 29:40–46.

    Article  PubMed  Google Scholar 

  21. 21.

    Krauss I, List R, Janssen P et al (2012) Comparison of distinctive gait variables using two different biomechanical models for knee joint kinematics in subjects with knee osteoarthritis and healthy controls. Clin Biomech (Bristol, Avon) 27:281–286.

    Article  Google Scholar 

  22. 22.

    Mochizuki T, Sato T, Blaha JD et al (2014) The clinical epicondylar axis is not the functional flexion axis of the human knee. J Orthop Sci 19:451–456.

    Article  PubMed  Google Scholar 

  23. 23.

    Peters A, Sangeux M, Morris ME et al (2009) Determination of the optimal locations of surface-mounted markers on the tibial segment. Gait Posture 29:42–48.

    Article  PubMed  Google Scholar 

  24. 24.

    Eckhoff D, Hogan C, DiMatteo L et al (2007) Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop Relat Res 461:238–244.

    Article  PubMed  Google Scholar 

  25. 25.

    Ikuta F, Yoneta K, Gamada K (2012) Validity of local coordinate systems embedded to the distal femur and proximal Tibia. In: Transaction of the 2012 ORS Annual meeting, February 4–7, San Francisco, CA Poster number 2014

  26. 26.

    Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Moro-oka TA, Hamai S, Miura H et al (2007) Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res 25:867–872.

    Article  PubMed  Google Scholar 

  28. 28.

    Andriacchi TP, Johnson TS, Hurwitz DE et al (2004) Musculoskeletal dynamics, locomotion, and clinical applications. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics and mechano-biology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 91–121

    Google Scholar 

  29. 29.

    Fishkin Z, Miller D, Ritter C et al (2002) Changes in human knee ligament stiffness secondary to osteoarthritis. J Orthop Res 20:204–207.

    Article  PubMed  Google Scholar 

  30. 30.

    Hortobagyi T, Westerkamp L, Beam S et al (2005) Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin Biomech (Bristol, Avon) 20:97–104.

    Article  Google Scholar 

  31. 31.

    Vasilevska V, Szeimies U, Stäbler A (2009) Magnetic resonance imaging signs of iliotibial band friction in patients with isolated medial compartment osteoarthritis of the knee. Skelet Radiol 38:871–875.

    Article  Google Scholar 

  32. 32.

    Merican AM, Amis AA (2009) Iliotibial band tension affects patellofemoral and tibiofemoral kinematics. J Biomech 42(10):1539–1546.

    Article  PubMed  Google Scholar 

  33. 33.

    Hirschmann MT, Müller W (2015) Complex function of the knee joint: the current understanding of the knee. Knee Surg Sports Traumatol Arthrosc 23:2780–2788.

    Article  PubMed  Google Scholar 

  34. 34.

    Schiphof D, Boers M, Bierma-Zeinstra SM (2008) Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis 67:1034–1036.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Wada M, Imura S, Baba H et al (1996) Knee laxity in patients with osteoarthritis and rheumatoid arthritis. Br J Rheumatol 35:560–563

    CAS  Article  Google Scholar 

  36. 36.

    Creaby MW, Wrigley TV, Lim BW et al (2013) Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis. BMC Musculoskelet Disord 14:326.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Omori G, Koga Y, Tanaka M et al (2013) Quadriceps muscle strength and its relationship to radiographic knee osteoarthritis in Japanese elderly. J Orthop Sci 18:536–542.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Akisue T, Stulberg BN, Bauer TW et al (2002) Histologic evaluation of posterior cruciate ligaments from osteoarthritic knees. Clin Orthop Relat Res 400:165–173

    Article  Google Scholar 

  39. 39.

    Kuo FC, Kao WP, Chen HI et al (2011) Squat-to-reach task in older and young adults: kinematic and electromyographic analyses. Gait Posture 33:124–129.

    Article  PubMed  Google Scholar 

  40. 40.

    Yoshioka Y, Siu DW, Scudamore RA et al (1989) Tibial anatomy and functional axes. J Orthop Res 7:132–137.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kim JG, Ha JK, Han SB et al (2013) Development and validation of a new evaluation system for patients with a floor-based lifestyle: the Korean knee score. Clin Orthop Relat Res 471:1539–1547.

    Article  PubMed  Google Scholar 

Download references


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Futoshi Ikuta.

Ethics declarations

Conflict of interest

The custom-made 3D-Aligner and 3D-JointManager programs used in this study were developed by GLAB Corp., of which KG is the president. The first author (FI) purchased this software at the standard retail price, and the company did not provide any financial support for the study. The authors declare that there are no other potential conflicts of interest regarding the contents of this paper.

Research involving human participants and/or animals

The participants were recruited from patients attending our university hospital in Japan. This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 51 kb)

Supplementary material 2 (XLSX 51 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ikuta, F., Yoneta, K., Miyaji, T. et al. Knee kinematics of severe medial knee osteoarthritis showed tibial posterior translation and external rotation: a cross-sectional study. Aging Clin Exp Res 32, 1767–1775 (2020).

Download citation


  • Knee
  • Osteoarthritis
  • Kinematics
  • Progression
  • Squatting
  • In vivo