Skip to main content

The influence of Visfatin, RBP-4 and insulin resistance on bone mineral density in women with treated primary osteoporosis

Abstract

Introduction

The impact of the two adipokines, visfatin and retinol-binding protein 4 (RBP-4) on bone mineral density (BMD) has been analysed in various studies with conflicting results. Visfatin is highly expressed in visceral fat with stimulatory effect on osteoblast proliferation and inhibition on osteoclast formation, while RBP-4 acts as a transporter protein for retinol, associated with changes in insulin sensitivity, independent of obesity, with no consensus on its effect on bone metabolism. We evaluated the relationship between serum concentrations of visfatin, RBP-4, markers of insulin resistance and current BMD in treated postmenopausal osteoporosis (PO).

Methods

Demographics, previous treatment, metabolic status, anthropometry, serum Alkaline phosphatise (ALP), visfatin, RBP-4, the HOMA IR (homeostatic model assessment of insulin resistance) index and BMD were evaluated in 61 subjects with PO. Statistical analysis used SPSS v. 25.0, with a level of significance α = 0.05. Regression models were constructed to evaluate the relationship between adipokines and BMD, adjusting for covariates.

Results

In multilinear regression analysis, the strongest predictor for current BMD was a previous BMD, followed by ALP and age. RBP4 and HOMA IR were significant predictors, while visfatin had no significant effect. A significant correlation between body mass index (BMI) and BMD at the femoral neck was observed. ALP was negatively correlated with BMD and visfatin positively with RBP4.

Conclusions

Data indicate a positive relationship between BMD and RBP-4, an inverse relationship between markers of insulin resistance, bone turn-over and current BMD. No significant effect of visfatin on BMD was observed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Cauley JA (2013) Public Health Impact of Osteoporosis. J Gerontol A Biol Sci Med Sci 68:1243–1251. https://doi.org/10.1093/gerona/glt093

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Eastell R, O’Neill TW, Hofbauer LC et al (2016) Postmenopausal osteoporosis. Nat rev Dis Primers 2:16069. https://doi.org/10.1038/nrdp.2016.69

    Article  PubMed  Google Scholar 

  3. 3.

    Holmberg AH, Johnell O, Nilsson PM et al (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 17:1065–1077. https://doi.org/10.1007/s00198-006-0164-4

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Greco EA, Lenzi A, Migliaccio S (2015) The obesity of the bone. Ther Adv Endocrinol Metab 6:273–286. https://doi.org/10.1177/2042018815611004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Compston JE, Watts NB, Chapurlat R et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050. https://doi.org/10.1016/j.amjmed.2011.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Premaor MO, Pilbrow L, Tonkin C et al (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297. https://doi.org/10.1359/jbmr.091004

    Article  PubMed  Google Scholar 

  7. 7.

    Dimitri P, Bishop N, Walsh JS et al (2012) Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50:457–466. https://doi.org/10.1016/j.bone.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Compston J (2015) Obesity and fractures in postmenopausal women. Curr Opin Rheumatol 27:414–419. https://doi.org/10.1097/bor.0000000000000182

    Article  PubMed  Google Scholar 

  9. 9.

    Tang X, Liu G, Kang J et al (2013) Obesity and risk of hip fracture in adults: a meta-analysis of prospective cohort studies. PLoS One 8:e55077. https://doi.org/10.1371/journal.pone.0055077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sogaard AJ, Holvik K, Omsland TK et al (2016) Age and sex differences in body mass index as a predictor of hip fracture: a NOREPOS study. Am J Epidemiol 184:510–519. https://doi.org/10.1093/aje/kww011

    Article  PubMed  Google Scholar 

  11. 11.

    Shen J, Leslie WD, Nielson CM et al (2015) Associations of body mass index with incident fractures and hip structural parameters in a large Canadian cohort. J Clin Endocrinol Metab 101:476–484. https://doi.org/10.1210/jc.2015-3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kim SH, Yi S, Yi J et al (2018) Association between body mass index and the risk of hip fracture by sex and age: a prospective cohort study. J Bone Miner Res 33:1603–1611. https://doi.org/10.1002/jbmr.3464

    Article  PubMed  Google Scholar 

  13. 13.

    Kaze AD, Rosen HN, Paik JM (2018) Osteoporos Int 29:31. https://doi.org/10.1007/s00198-017-4294-7

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Katzmarzyk PT, Barreira TV, Harrington DM et al (2012) Relationship between abdominal fat and bone mineral density in white and African American adults. Bone 50:576–579. https://doi.org/10.1016/j.bone.2011.04.012

    Article  PubMed  Google Scholar 

  15. 15.

    Greco EA, Lenzi A, Migliaccio S (2015) The obesity of bone. Therapeutic Advances in Endocrinology and Metabolism 6:273–286. https://doi.org/10.1177/2042018815611004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Palermo A, Tuccinardi D, Defeudis G et al (2016) BMI and BMD: the potential interplay between obesity and bone fragility. Int J Environ Res Publ Health 13:544. https://doi.org/10.3390/ijerph13060544

    Article  CAS  Google Scholar 

  17. 17.

    Moradi S, Shab-Bidar S, Alizadeh S et al (2017) Association between sleep duration and osteoporosis risk in middle-aged and elderly women: a systematic review and meta-analysis of observational studies. Metabolism 69:199–206. https://doi.org/10.1016/j.metabol.2017.01.027

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Biver E, Salliot C, Combescure C et al (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2703–2713. https://doi.org/10.1210/jc.2011-0047

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Liu Y, Song CY, Wu SS et al (2013) Novel Adipokines and Bone Metabolism. Int J Endocrin  2013:895045. https://doi.org/10.1155/2013/895045

    CAS  Article  Google Scholar 

  20. 20.

    Zhang H, Xie H, Zhao Q et al (2010) Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J Endocrinol Invest 33:707–711. https://doi.org/10.1007/BF03346674

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Wu N, Wang QP, Li H et al (2010) Relationships between serum adiponectin, leptin concentrations and bone mineral density, and bone biochemical markers in Chinese women. Clin Chim Acta 411:771–775. https://doi.org/10.1016/j.cca.2010.02.064

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Rhie YJ, Lee KH, Chung SC et al (2010) Effects of body composition, leptin, and adiponectin on bone mineral density in prepubertal girls. J Korean Med Sci 25:1187–1190. https://doi.org/10.3346/jkms.2010.25.8.1187

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Baek JM, Ahn SJ, Cheon YH et al (2017) Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro. Mol Med Rep 15:784–792. https://doi.org/10.3892/mmr.2016.6069

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Graham TE, Yang Q, Bluher M et al (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Eng J Med 354:2552–2563. https://doi.org/10.1056/NEJMoa054862

    Article  CAS  Google Scholar 

  25. 25.

    Ma L, Oei L, Jiang L et al (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27:319–332. https://doi.org/10.1007/s10654-012-9674-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Choo MS, Choi SR, Han JH et al (2017) Association of insulin resistance with near peak bone mass in the femur and lumbar spine of Korean adults aged 25-35: the Korean national health and nutrition examination survey 2008–2010. PLoS One 12:e0177311. https://doi.org/10.1371/journal.pone.0177311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Shanbhogue VV, Joel SF, Bouxsein ML et al (2016) Association between insulin resistance and bone structure in nondiabetic postmenopausal women. J Clin Endocrinol Metab 101:3114–3122. https://doi.org/10.1210/jc.2016-1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Srikanthan P, Crandall CJ, Miller-Martinez D et al (2014) Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Mineral Res 29:796–803. https://doi.org/10.1002/jbmr.2083

    Article  CAS  Google Scholar 

  29. 29.

    Zhou J, Huang N, Cheng Y et al (2018) Retinol binding protein 4 is positively associated with bone mineral density in osteopenia and osteoporosis type 2 diabetic patients. Clin Endocrinol 88:659–664. https://doi.org/10.1111/cen.13560

    Article  CAS  Google Scholar 

  30. 30.

    Crespo R, Relea P, Lozano D et al (1995) Biochemical markers of nutrition in elite-marathon runners. J Sports Med Phys Fitness 35:268–272

    CAS  PubMed  Google Scholar 

  31. 31.

    Tohidi M, Akbarzadeh S, Larijani B et al (2012) Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women. Bone 51:876–881. https://doi.org/10.1016/j.bone.2012.08.117

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Khorrami-Nezhad L, Mirzaei K, Maghbooli Z et al (2018) Dietary fat intake associated with bone mineral density among visfatin genotype in obese people. Br J Nutr 119:3–11. https://doi.org/10.1017/S000711451700304X

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Gonnelli S, Caffarelli C, Nuti R (2014) Obesity and fracture risk. Clin Cases Mineral Bone Metab 11:9–14. https://doi.org/10.11138/ccmbm/2014.11.1.009

    Article  Google Scholar 

Download references

Acknowledgements

Ionela Maria Pascanu and Raluca-Monica Pop were supported by an internal research grant from the University of Medicine and Pharmacy Tirgu-Mures, Romania (Nr. 17802/1/22.12.2015). The authors would like to show their gratitude to the staff of the Rehabilitation Hospital, Baile Felix for their contribution and warm support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Ildiko Gasparik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written consent was obtained from all participants before any study procedure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mihai, G., Gasparik, A.I., Pascanu, I.M. et al. The influence of Visfatin, RBP-4 and insulin resistance on bone mineral density in women with treated primary osteoporosis. Aging Clin Exp Res 31, 889–895 (2019). https://doi.org/10.1007/s40520-019-01206-6

Download citation

Keywords

  • Bone mineral density
  • Adipokines