Skip to main content

Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study

Abstract

Background

It has been suggested that a balanced nutritional intake may be useful in preventing or even reversing sarcopenia.

Aim

To describe cross-sectional associations between dietary nutrient intake and sarcopenia.

Methods

Subjects recruited from the SarcoPhAge study population completed a food frequency questionnaire. The micronutrient and macronutrient intake was evaluated in both sarcopenic and non-sarcopenic participants. The Nutritional Belgian Recommendations of 2016 were used, i.e., adequate intake and estimated average requirement (EAR). For micronutrients, the prevalence of insufficient intake was estimated as the proportion of subjects whose intake was below the EAR.

Results

A total of 331 subjects (mean age of 74.8 ± 5.9 years, 58.9% women) had complete data and were included in this study. Among them, 51 were diagnosed with sarcopenia (15.4%). In the fully adjusted model, analyses revealed that sarcopenic subjects consumed significantly lower amounts of two macronutrients (proteins, lipids) and five micronutrients (potassium, magnesium, phosphorus, iron, and vitamin K) than non-sarcopenic subjects (all p values < 0.005). A significantly increased prevalence of insufficiency was found for sarcopenic subjects compared to non-sarcopenic subjects for potassium, magnesium, iron, calcium and vitamins E and C (all p values < 0.005). The prevalence of sarcopenic subjects who were also below the Nutritional Belgian Recommendations for protein and lipids was significantly higher than that of non-sarcopenic subjects.

Discussion and conclusions

Sarcopenic subjects seem to consume significantly reduced amounts of many micronutrients and macronutrients compared to non-sarcopenic subjects. These results suggest that a poorly balanced diet may be associated with sarcopenia and poor musculoskeletal health, although prospective studies are needed to confirm these findings.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558. https://doi.org/10.1093/gerona/glu010

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cesari M, Fielding RA, Pahor M et al (2012) Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J Cachexia Sarcopenia Muscle 3:181–190. https://doi.org/10.1007/s13539-012-0078-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169

    Article  Google Scholar 

  5. 5.

    Cao L, Morley JE, Rosenberg H et al (2016) sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J Am Med Dir Assoc 17:675–677. https://doi.org/10.1016/j.jamda.2016.06.001

    Article  PubMed  Google Scholar 

  6. 6.

    Cruz-Jentoft AJ, Landi F, Schneider SM et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 43:748–759. https://doi.org/10.1093/ageing/afu115

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Beaudart C, Rizzoli R, Bruyère O et al (2014) Sarcopenia: burden and challenges for public health. Arch Public Health. https://doi.org/10.1186/2049-3258-72-45

    Article  Google Scholar 

  8. 8.

    Beaudart C, Zaaria M, Pasleau F et al (2017) Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One. https://doi.org/10.1371/journal.pone.0169548

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Visser M, Schaap LA (2011) Consequences of sarcopenia. Clin Geriatr Med 27:387–399. https://doi.org/10.1016/j.cger.2011.03.006

    Article  PubMed  Google Scholar 

  10. 10.

    Zhao Y, Zhang Y, Hao Q et al (2019) Sarcopenia and hospital-related outcomes in the old people: a systematic review and meta-analysis. Aging Clin Exp Res 31:5–14. https://doi.org/10.1007/s40520-018-0931-z

    Article  PubMed  Google Scholar 

  11. 11.

    Nieuwenhuizen WF, Weenen H, Rigby P, Hetherington MM (2010) Older adults and patients in need of nutritional support: review of current treatment options and factors influencing nutritional intake. Clin Nutr 29:160–169. https://doi.org/10.1016/j.clnu.2009.09.003

    Article  PubMed  Google Scholar 

  12. 12.

    Malafarina V, Uriz-Otano F, Gil-Guerrero L, Iniesta R (2013) The anorexia of ageing: physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas 74:293–302. https://doi.org/10.1016/j.maturitas.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Hedman S, Nydahl M, Faxén-Irving G (2016) Individually prescribed diet is fundamental to optimize nutritional treatment in geriatric patients. Clin Nutr 35:692–698. https://doi.org/10.1016/j.clnu.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Beaudart C, Gillain S, Petermans J et al (2014) Sarcopenia: what’s new in 2014. Rev Med Liege 69:251–257

    CAS  PubMed  Google Scholar 

  15. 15.

    Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC (2017) Nutrition, frailty, and sarcopenia. Aging Clin Exp Res 29:43–48. https://doi.org/10.1007/s40520-016-0709-0

    Article  PubMed  Google Scholar 

  16. 16.

    Penninx BWJH, Pahor M, Cesari M et al (2004) Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc 52:719–724. https://doi.org/10.1111/j.1532-5415.2004.52208.x

    Article  PubMed  Google Scholar 

  17. 17.

    Sgrò P, Sansone M, Sansone A et al (2018) Physical exercise, nutrition and hormones: three pillars to fight sarcopenia. Aging Male. https://doi.org/10.1080/13685538.2018.1439004

    Article  PubMed  Google Scholar 

  18. 18.

    Beaudart C, Dawson A, Shaw SC et al (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int. https://doi.org/10.1007/s00198-017-3980-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Denison HJ, Cooper C, Sayer AA, Robinson SM (2015) Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging 10:859–869. https://doi.org/10.2147/CIA.S55842

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Beaudart C, Rabenda V, Simmons M et al (2017) Effects of protein, essential amino acids, B-hydroxy B-methylbutyrate, creatine, dehydroepiandrosterone and fatty acid supplementation on muscle mass, muscle strength and physical performance in older people aged 60 years and over. A systematic review of the literature. J Nutr Heal Aging. https://doi.org/10.1007/s12603-017-0934-z

    Article  Google Scholar 

  21. 21.

    Nowson C, O’Connell S (2015) Protein requirements and recommendations for older people: a review. Nutrients 7:6874–6899. https://doi.org/10.3390/nu7085311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cawood AL, Elia M, Stratton RJ (2012) Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res Rev 11:278–296. https://doi.org/10.1016/j.arr.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Beaudart C, Buckinx F, Rabenda V et al (2014) The effects of vitamin D on skeletal muscle strength, muscle mass and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 99:4336–4345. https://doi.org/10.1210/jc.2014-1742

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Beaudart C, Reginster JYY, Petermans J et al (2015) Quality of life and physical components linked to sarcopenia: the SarcoPhAge study. Exp Gerontol 69:103–110. https://doi.org/10.1016/j.exger.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Schaap LA, Fox B, Henwood T et al (2016) Grip strength measurement: towards a standardized approach in sarcopenia research and practice. Eur Geriatr Med. https://doi.org/10.1016/j.eurger.2015.11.012

    Article  Google Scholar 

  27. 27.

    Guralnik JM, Ferrucci L, Pieper CF et al (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 55:M221–M231

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Arnault N (2013) Table de Composition des Aliments, étude NutriNet-Santé. [Food Composition Table, NutriNet-Santé Study]. Les éditions INSERM/Economica, Paris (in French)

    Google Scholar 

  29. 29.

    Carriquiry AL (1999) Assessing the prevalence of nutrient inadequacy. Public Health Nutr 2:23–33

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Tombaugh TN, McIntyre NJ (1992) The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 40:922–935

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Yesavage JA, Brink TL, Rose TL et al (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17:37–49

    Article  PubMed  Google Scholar 

  32. 32.

    Voorrips LE, Ravelli AC, Dongelmans PC et al (1991) A physical activity questionnaire for the elderly. Med Sci Sports Exerc 23:974–979

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    ter Borg S, de Groot LCPGM, Mijnarends DM et al (2016) Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults—results from the maastricht sarcopenia study. J Am Med Dir Assoc 17:393–401. https://doi.org/10.1016/j.jamda.2015.12.015

    Article  PubMed  Google Scholar 

  34. 34.

    Borack MS, Volpi E (2016) Efficacy and safety of leucine supplementation in the elderly. J Nutr 146:2625S–2629S. https://doi.org/10.3945/jn.116.230771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Leenders M, van Loon LJ (2011) Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr Rev 69:675–689. https://doi.org/10.1111/j.1753-4887.2011.00443.x

    Article  PubMed  Google Scholar 

  36. 36.

    Houston DK, Nicklas BJ, Ding J et al (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the health, aging, and body composition (Health ABC) study. Am J Clin Nutr 87:150–155

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Beasley JM, LaCroix AZ, Larson JC et al (2014) Biomarker-calibrated protein intake and bone health in the women’s health initiative clinical trials and observational study. Am J Clin Nutr 99:934–940. https://doi.org/10.3945/ajcn.113.076786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    McLean RR, Mangano KM, Hannan MT et al (2016) Dietary protein intake is protective against loss of grip strength among older adults in the framingham offspring cohort. J Gerontol Ser A Biol Sci Med Sci 71:356–361. https://doi.org/10.1093/gerona/glv184

    Article  CAS  Google Scholar 

  39. 39.

    de Baaij JHF, Hoenderop JGJ, Bindels RJM (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  Google Scholar 

  40. 40.

    Lukaski HC (2000) Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr 72:585S–593S. https://doi.org/10.1093/ajcn/72.2.585S

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Clausen T, Everts ME (1989) Regulation of the Na, K-pump in skeletal muscle. Kidney Int 35:1–13

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131:568S–580S. https://doi.org/10.1093/jn/131.2.568S

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    van Dronkelaar C, van Velzen A, Abdelrazek M et al (2018) Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J Am Med Dir Assoc 19:6.e3–11.e3. https://doi.org/10.1016/j.jamda.2017.05.026

    Article  Google Scholar 

  44. 44.

    Veronese N, Berton L, Carraro S et al (2014) Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am J Clin Nutr 100:974–981. https://doi.org/10.3945/ajcn.113.080168

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Verlaan S, Aspray TJ, Bauer JM et al (2017) Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case–control study. Clin Nutr 36:267–274. https://doi.org/10.1016/J.CLNU.2015.11.013

    Article  PubMed  Google Scholar 

  46. 46.

    Verlaan S, Aspray TJ, Bauer JM et al (2015) Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case–control study. Clin Nutr. https://doi.org/10.1016/j.clnu.2015.11.013

    Article  PubMed  Google Scholar 

  47. 47.

    Waters DL, Wayne SJ, Andrieu S et al (2014) Sexually dimorphic patterns of nutritional intake and eating behaviors in community-dwelling older adults with normal and slow gait speed. J Nutr Health Aging 18:228–233. https://doi.org/10.1007/s12603-014-0004-8

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Scott D, Blizzard L, Fell J et al (2010) Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the tasmanian older adult cohort study. J Am Geriatr Soc 58:2129–2134. https://doi.org/10.1111/j.1532-5415.2010.03147.x

    Article  PubMed  Google Scholar 

  49. 49.

    Bartali B, Frongillo EA, Guralnik JM et al (2008) Serum micronutrient concentrations and decline in physical function among older persons. JAMA 299:308–315. https://doi.org/10.1001/jama.299.3.308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Martin H, Aihie Sayer A, Jameson K et al (2011) Does diet influence physical performance in community-dwelling older people? Findings from the Hertfordshire cohort study. Age Ageing 40:181–186. https://doi.org/10.1093/ageing/afq175

    Article  PubMed  Google Scholar 

  51. 51.

    Chen Y-L, Yang K-C, Chang H-H et al (2014) Low serum selenium level is associated with low muscle mass in the community-dwelling elderly. J Am Med Dir Assoc 15:807–811. https://doi.org/10.1016/J.JAMDA.2014.06.014

    Article  PubMed  Google Scholar 

  52. 52.

    Beck J, Ferrucci L, Sun K et al (2007) Low serum selenium concentrations are associated with poor grip strength among older women living in the community. BioFactors 29:37–44. https://doi.org/10.1002/biof.5520290104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Lauretani F, Semba RD, Bandinelli S et al (2007) Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: the InCHIANTI Study. Am J Clin Nutr 86:347–352. https://doi.org/10.1093/ajcn/86.2.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23. https://doi.org/10.1080/10408360701713104

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Baumann CW, Kwak D, Liu HM, Thompson LV (2016) Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol 121:1047–1052. https://doi.org/10.1152/japplphysiol.00321.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hashemi R, Motlagh AD, Heshmat R et al (2015) Diet and its relationship to sarcopenia in community dwelling Iranian elderly: a cross sectional study. Nutrition 31:97–104. https://doi.org/10.1016/J.NUT.2014.05.003

    Article  PubMed  Google Scholar 

  57. 57.

    Bollwein J, Diekmann R, Kaiser MJ et al (2013) Dietary quality is related to frailty in community-dwelling older adults. J Gerontol Ser A Biol Sci Med Sci 68:483–489. https://doi.org/10.1093/gerona/gls204

    Article  Google Scholar 

  58. 58.

    Talegawkar SA, Bandinelli S, Bandeen-Roche K et al (2012) A higher adherence to a mediterranean-style diet is inversely associated with the development of frailty in community-dwelling elderly men and women. J Nutr 142:2161–2166. https://doi.org/10.3945/jn.112.165498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would first thank all participants of the SarcoPhAge study for the time they dedicated in our research and for their fidelity over the years. We would like to acknowledge Pr. Michèle Guillaume, head of the Department of Public Health of the University of Liège for her help and support in designing our Food Frequency Questionnaire. Moreover, we thank Nathalie Arnault, biostatistician from the «Equipe de Recherche en Epidémiologie Nutritionnelle (EREN, UMR U1153 Inserm/U1125 Inra/Cnam/Universités Paris 5, 7 et 13, Centre de Recherche en Epidémiologie et Statistiques Sorbonne Paris Cité (CRESS)» for their support in analysing results of the Food Frequency Questionnaire.

Funding

CB and ML are supported by a fellowship from the FNRS (Fonds National de la Recherche Scientifique de Belgique—FRSFNRS—http://www.frs-fnrs.be).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charlotte Beaudart.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee as well as with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 270 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beaudart, C., Locquet, M., Touvier, M. et al. Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study. Aging Clin Exp Res 31, 815–824 (2019). https://doi.org/10.1007/s40520-019-01186-7

Download citation

Keywords

  • Sarcopenia
  • Micronutrient
  • Macronutrient
  • Nutrition
  • Diet
  • Muscle health