Skip to main content

Advertisement

Log in

Recent advances in the role of cortisol and metabolic syndrome in age-related degenerative diseases

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The metabolic syndrome (MetS) presents an increasing prevalence in elderly people. A significant role in MetS is played by the stress response and cortisol. The hypothalamic–pituitary–adrenal (HPA) axis activity is increased by central (loss of hippocampal glucocorticoid receptors) and peripheral (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1, hyperactivity) mechanisms. The HPA hyperactivity has been found in chronic diseases affecting the endocrine (abdominal obesity with MetS, type 2 diabetes), cardiovascular (atherosclerosis, essential hypertension), and nervous systems (dementia, depression), in aging. A novel therapeutic approach (11β-HSD1 inhibition) is promising in treating the HPA axis hyperactivity in chronic diseases with MetS. A large-scale national clinical trial (AGICO, AGIng, and COrtisol study) has been proposed by our group to evaluate the role of cortisol and MetS in the main pathologies of aging (vascular and degenerative dementia, cardiovascular diseases, type 2 diabetes, abdominal obesity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). NIH Publication 2:1–284

    Google Scholar 

  2. Erkelens DW, de Bruin TWA, Cabezas MC (1993) Tulp syndrome. Lancet 342:1536–1537

    Article  CAS  PubMed  Google Scholar 

  3. Crepaldi G, Manzato E (1995) Polymetabolic syndrome. Minerva Endocrinol 20:155–160

    CAS  PubMed  Google Scholar 

  4. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of aWHO consultation. Diabet Med 15:539–553

    Article  CAS  PubMed  Google Scholar 

  5. Balkau B, Charles MA (1999) Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 16:442–443

    Article  CAS  PubMed  Google Scholar 

  6. Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  7. Bloomgarden ZT (2003) American Association of Clinical Endocrinologists (AACE) consensus conference on the insulin resistance syndrome. Diabetes Care 26:1297–1303

    Article  PubMed  Google Scholar 

  8. Alberti KG, Zimmet P, Shaw J (2005) International Diabetes Federation (IDF) Epidemiology Task Force Consensus Group. The metabolic syndrome: a new worldwide definition. Lancet 366:1059–1062

    Article  PubMed  Google Scholar 

  9. Grundy SM, Cleeman JI, Daniels SR et al (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  10. Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome. A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645

    Article  CAS  PubMed  Google Scholar 

  11. Seth SM, Abd TT, Jones SR et al (2014) ACC/AHA Cholesterol treatment guideline. What was done well and what could be done better. J Am Coll Cardiol 63:2674–2678

    Article  Google Scholar 

  12. Cornier MA, Dabelea D, Hernandez TL et al (2008) The metabolic syndrome. End Rev 29:777–822

    CAS  Google Scholar 

  13. Maggi S, Noale M, Zambon A et al (2008) Validity of the ATP III diagnostic criteria for the metabolic syndrome in an elderly Italian Caucasian population: the Italian Longitudinal Study on Aging. Atherosclerosis 197:877–882

    Article  CAS  PubMed  Google Scholar 

  14. Stefanelli M, Martocchia A, De Marinis EA et al (2013) Prevalence of metabolic syndrome in cognitive impairment. Aging Clin Exp Res 25:351–352

    Article  CAS  PubMed  Google Scholar 

  15. Egger G, Dixon J (2010) Obesity prevention. Inflammatory effects of nutritional stimuli: further support for the need for a big picture approach to tackling obesity and chronic disease. Obes Rev 11:137–149

    Article  CAS  PubMed  Google Scholar 

  16. Fehevari Z (2012) Focus on the inflammasome. An inflammatory assemblage. Nat Immunol 13:320

    Article  Google Scholar 

  17. Després JP, Lemieux I, Bergeron J et al (2008) Cardiometabolic risk abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049

    Article  PubMed  Google Scholar 

  18. Bjorntorp P (1991) Visceral fat accumulation: the missing link between psychosocial factors and cardiovascular disease? J Intern Med 230:195–201

    Article  CAS  PubMed  Google Scholar 

  19. Björntorp P (2001) Do stress reactions cause abdominal obesity and comorbidities? Obes Rev 2:73–86

    Article  PubMed  Google Scholar 

  20. Martocchia A, Curto M, Toussan L et al (2011) Pharmacological strategies against glucocorticoid-mediated brain damage during chronic disorders. Rec Patents CNS Drug Discov 6:196–204

    Article  CAS  Google Scholar 

  21. Falaschi P, Martocchia A, Proietti A et al (1994) Immune system and the hypothalamus pituitary–adrenal axis. Common words for a single language. Ann N Y Acad Sci 29:89–111

    Google Scholar 

  22. McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186:190–222

    Article  PubMed Central  PubMed  Google Scholar 

  23. Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284

    Article  CAS  PubMed  Google Scholar 

  24. Herman JP, Ostrander MM, Mueller NK et al (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201–1213

    Article  CAS  PubMed  Google Scholar 

  25. Peiffer A, Barden N, Meaney MJ (1991) Age-related changes in glucocorticoid receptor binding and mRNA levels in the rat brain and pituitary. Neurobiol Aging 12:475–479

    Article  CAS  PubMed  Google Scholar 

  26. Sapolsky RM, Krey LC, McEwen BS (1983) The adrenocortical stress-response in the aged male rat: impairment of recovery from stress. Exp Gerontol 18:55–64

    Article  CAS  PubMed  Google Scholar 

  27. Van Cauter E, Leproult R, Kupfer DJ (1996) Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocr Metab 81:2468–2473

    PubMed  Google Scholar 

  28. Falaschi P (1993) Neuroendocrinoimmunology. 94° Congr SIMI Ed Luigi Pozzi, Rome, pp 315–416

  29. Tomlinson JW, Stewart PM (2004) “Cushing’s disease of the omentum”—fact or fiction? J Endocrinol Invest 27:171–174

    Article  CAS  PubMed  Google Scholar 

  30. Duclos M, Marquez Pereira P, Barat P et al (2005) Increased cortisol bioavailability, abdominal obesity, and the metabolic syndrome in obese women. Obes Res 13:1157–1166

    Article  CAS  PubMed  Google Scholar 

  31. Seeman TE, McEwen BS, Rowe JW et al (2001) Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc Natl Acad Sci 98:4770–4775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Meco G, Formisano R, Falaschi P et al (1985) Dexamethasone non-suppressor Parkinsonian patients: a subgroup with depression and mental impairment. In: Burrows GD, Norman TR, Dennerstein L (eds) Clinical and pharmacological studies in psychiatric disorders. John Lippey, London, pp 171–185

    Google Scholar 

  33. Dekker MJ, Koper JW, Van Aken MO et al (2008) Salivary cortisol is related to atherosclerosis of carotid arteries. J Clin Endocrinol Metab 93:3741–3747

    Article  CAS  PubMed  Google Scholar 

  34. Chiodini I (2011) Diagnosis and treatment of subclinical hypercortisolism. J Clin Endocrinol Metab 96:1223–1236

    Article  CAS  PubMed  Google Scholar 

  35. Wirtz PH, Von Känel R, Emini L et al (2007) Evidence for altered hypothalamus–pituitary–adrenal axis functioning in systemic hypertension: blunted cortisol response to awakening and lower negative feedback sensitivity. Psychoneuroendocrinology 32:430–436

    Article  CAS  PubMed  Google Scholar 

  36. Gruenewald TL, Seeman TE, Karlamangla AS et al (2009) Allostatic load and frailty in older adults. J Am Geriatr Soc 57:1525–1531

    Article  PubMed Central  PubMed  Google Scholar 

  37. Solfrizzi V, Scafato E, Frisardi V et al (2012) Frailty syndrome and all-cause mortality in demented patients: the Italian Longitudinal Study on Aging. Age (Dordr) 34:507–517

    Article  Google Scholar 

  38. Waters DL, Qualls CR, Dorin RI et al (2008) Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes. J Gerontol A Biol Sci 63:536–541

    Article  Google Scholar 

  39. Scafato E, Gandin C, Galluzzo L et al (2010) Prevalence of aging-associated cognitive decline in an Italian elderly population: results from cross-sectional phase of Italian PRoject on Epidemiology of Alzheimer’s disease (IPREA). Aging Clin Exp Res 22:440–449

    Article  PubMed  Google Scholar 

  40. Huang CW, Lui CC, Chang WN et al (2009) Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. J Clin Neurosci 16:1283–1286

    Article  CAS  PubMed  Google Scholar 

  41. Raffaitin C, Tzourio C, Gin E et al (2009) Metabolic syndrome and risk for incident Alzheimer disease or vascular dementia: the three-city study. Diabetes Care 32:169–174

    Article  PubMed Central  PubMed  Google Scholar 

  42. Vanhanen M, Koivisto K, Moilanen L et al (2006) Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology 67:843–847

    Article  CAS  PubMed  Google Scholar 

  43. Stefanelli M, Martocchia A, De Marinis EA et al (2014) Treatment of insulin resistance in the neurodegeneration. Recent Patents CNS Drug Discovery 9:54–63

    Article  CAS  PubMed  Google Scholar 

  44. Murakami H, Nigawara T, Sakihara S et al (2010) The frequency of type 2 diabetic patients who meet the endocrinological screening criteria of subclinical Cushing’s disease. Endocr J 57:267–272

    Article  PubMed  Google Scholar 

  45. Hamer M, O’Donnell K, Lahiri A et al (2010) Salivary cortisol responses to mental stress are associated with coronary artery calcification in healthy men and women. Eur Heart J 31:424–429

    Article  CAS  PubMed  Google Scholar 

  46. Dennison E, Hindmarsh P, Fall C et al (1999) Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 84:3058–3063

    CAS  PubMed  Google Scholar 

  47. Maggi S, Siviero P, Gonnelli S et al (2011) The burden of previous fractures in hip fracture patients. The Break Study. Aging Clin Exp Res 23:183–186

    Article  PubMed  Google Scholar 

  48. Zillikens MC, Uitterlinden AG, Van Leeuwen JP et al (2010) The role of body mass index, insulin, and adiponectin in the relation between fat distribution and bone mineral density. Calcif Tissue Int 86:116–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Doherty TM, Asotra K, Fitzpatrick LA et al (2003) Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci USA 100:11201–11206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Helas S, Goettsch C, Schoppet M et al (2009) Inhibition of receptor activator of NF-kappa B ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol 175:473–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Martocchia A, Toussan L, Stefanelli M et al (2011) Association of severity of osteoarthritis and carotid atherosclerosis in patients with metabolic syndrome. Rheumatol Open Access J 1:1–3

    Google Scholar 

  52. Stewart PM, Krozowski ZS (1999) 11β-Hydroxysteroid dehydrogenase. Vitam Horm 57:249–324

    Article  CAS  PubMed  Google Scholar 

  53. Basu R, Singh RJ, Basu A et al (2004) Splanchnic cortisol production occurs in humans evidence for conversion of cortisone to cortisol via the 11-β hydroxysteroid dehydrogenase (11β-HSD) type 1 pathway. Diabetes 53:2051–2059

    Article  CAS  PubMed  Google Scholar 

  54. Moisan MP, Seckl JR, Edwards CR (1990) 11β-Hydroxysteroid dehydrogenase bioactivity and messenger RNA expression in rat forebrain: localization in hypothalamus, hippocampus, and cortex. Endocrinology 127:1450–1455

    Article  CAS  PubMed  Google Scholar 

  55. Veilleux A, Rhéaume C, Daris M et al (2009) Omental adipose tissue type 1 11beta-hydroxysteroid dehydrogenase oxoreductase activity, body fat distribution, and metabolic alterations in women. J Clin Endocrinol Metab 94:3550–3557

    Article  CAS  PubMed  Google Scholar 

  56. Wake DJ, Rask E, Livingstone DE et al (2003) Local and systemic impact of transcriptional up-regulation of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metab 88:3983–3988

    Article  CAS  PubMed  Google Scholar 

  57. Cooper MS, Rabbitt EH, Goddard PE et al (2002) Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J Bone Miner Res 17:979–986

    Article  CAS  PubMed  Google Scholar 

  58. Morton NM, Paterson JM, Masuzaki H et al (2004) Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11β-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 53:931–938

    Article  CAS  PubMed  Google Scholar 

  59. Martocchia A, Stefanelli M, Falaschi GM et al (2013) Targets of anti-glucocorticoid therapy for stress-related disease. Recent Patents CNS Drug Discov 8:79–87

    Article  CAS  Google Scholar 

  60. Alberts P, Engblom L, Edling N et al (2002) Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 45:1528–1532

    Article  CAS  PubMed  Google Scholar 

  61. Hermanowski-Vosatka A, Balkovec JM, Cheng K et al (2005) 11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 202:517–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Rosenstock J, Bananer S, Fonseca VA et al (2010) The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled Bb metformin monotherapy. Diabetes Care 33:1516–1522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Feig PU, Shah S, Hermanowski-Vosatka A et al (2011) Effects of an 11-betahydroxysteroid dehydrogenase type 1 inhibitor, MK-0916, in patients with type 2 diabetes mellitus and metabolic syndrome. Diabetes Obes Metab 13:498–504

    Article  CAS  PubMed  Google Scholar 

  64. Shah S, Hermanowski-Vosatka A, Gibson K et al (2011) Efficacy and safety of the selective 11β-HSD1 inhibitors MK-0736 and MK-0916 in overweight and obese patients with hypertension. J Am Soc Hypertension 5:166–176

    Article  CAS  Google Scholar 

Download references

Conflict of interest

None.

Human and Animal Rights

The article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Falaschi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martocchia, A., Stefanelli, M., Falaschi, G.M. et al. Recent advances in the role of cortisol and metabolic syndrome in age-related degenerative diseases. Aging Clin Exp Res 28, 17–23 (2016). https://doi.org/10.1007/s40520-015-0353-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0353-0

Keywords

Navigation