Skip to main content

Advertisement

Log in

Aging does not affect the ability of human monocyte-derived dendritic cells to phagocytose Candida albicans

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Dendritic cells (DCs) are the most potent antigen-presenting cells, playing a key role in induction of both innate and adaptive immunity. Immunosenescence refers to age-associated changes in the immune system, which may be associated with susceptibility to infections and their clinical complications. The precise effects of aging on DCs in immunity to infections are not well understood. Among the common pathogenic microorganisms, the fungus Candida albicans is an important pathogen for the development of invasive infections, especially in immunocompromised individuals, as well as during aging.

Aims

To make a comparative in vitro evaluation of the immunomodulatory function of DCs challenged with C. albicans, by phagocytosis of the fungal cells, and determine the involvement of TLR2 and TLR4 receptors. For this purpose, DCs were generated with the use of peripheral blood monocytes from healthy young and aged subjects.

Results

The phagocytosis of C. albicans is developed by DCs in TLR2- and TLR4-dependent way. This mechanism is not affected by aging.

Conclusion

Given the important role of the DCs in responses against the fungus, it is evident that if changes in phagocytosis occurred with aging, impairment in the elderly could develop. However, the evidence that phagocytosis of this fungus by DCs is not impaired with aging, brings us to the question of which are the mechanisms truly associated with the prevalence of certain diseases in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S (2004) Innate immunity in aging: impact on macrophage function. Aging Cell 4:161–167. doi:10.1111/j.1474-9728.2004.00102.x

    Article  Google Scholar 

  2. Appay V, Sauce D, Prelog M (2010) The role of the thymus in immunosenescence: lessons from the study of thymectomized individuals. Aging 2:78–81

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Pinke KH, Calzavara C, Freitas-Faria P, Nascimento MPP, Venturini J, Lara VS (2013) Proinflammatory profile of in vitro monocytes in the ageing is affected by lymphocytes presence. Immun Ageing 10:22. doi:10.1186/1742-4933-10-22

    Article  PubMed Central  PubMed  Google Scholar 

  4. Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, Vergani C, Villa ML (2007) Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 122:220–228

    Article  CAS  PubMed  Google Scholar 

  5. Gasparoto TH, Vieira NA, Porto VC, Campanelli AP, Lara VS (2009) Ageing exacerbates damage of systemic and salivary neutrophils from patients presenting Candida-related denture stomatitis. Immun Ageing 6:3

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gasparoto TH, Vieira NA, Porto VC, Campanelli AP, Lara VS (2011) Differences between salivary and blood neutrophils from elderly and young denture wearers. J Oral Rehabil 38:41–51

    Article  CAS  PubMed  Google Scholar 

  7. Gasparoto TH, de Oliveira CE, Vieira NA, Porto VC, Cunha FQ, Garlet GP, Campanelli AP, Lara VS (2012) Activation pattern of neutrophils from blood of elderly individuals with Candida-related denture stomatitis. Eur J Clin Microbiol Infect Dis 31:1271–1277

    Article  CAS  PubMed  Google Scholar 

  8. Ciaramella A, Spalletta G, Bizzoni F, Salani F, Caltagirone C, Bossu P (2011) Effect of age on surface molecules and cytokine expression in human dendritic cells. Cell Immunol 269:82–89

    Article  CAS  PubMed  Google Scholar 

  9. Asquith M, Haberthur K, Brown M, Engelmann F, Murphy A, Al-Mahdi Z, Messaoudi Ilhem (2012) Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta). Pathobiol Aging Age Relat Dis 2:10

    PubMed Central  Google Scholar 

  10. Agrawal A, Agrawal S, Gupta S (2007) Dendritic cells in human aging. Exp Gerontol 42:421–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gupta S (2014) Role of dendritic cells in innate and adaptive immune response in human aging. Exp Gerontol 54:47–52. doi:10.1016/j.exger.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  12. Agrawal A, Sridharan A, Prakash S, Agrawal H (2012) Dendritic cells and aging: consequences for autoimmunity. Expert Rev Clin Immunol 8:73–80. doi:10.1586/eci.11.77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Agrawal A (2013) Mechanisms and implications of age-associated impaired innate interferon secretion by dendritic cells: a mini-review. Gerontology 59:421–426. doi:10.1159/000350536

    Article  PubMed  Google Scholar 

  14. Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR (2011) Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 10:346–353. doi:10.1016/j.arr.2010.10.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Olivieri F, Procopio AD, Montgomery RR (2014) Effect of aging on microRNAs and regulation of pathogen recognition receptors. Curr Opin Immunol 29C:29–37. doi:10.1016/j.coi.2014.03.006

    Article  Google Scholar 

  16. Chai LY, Netea MG, Vonk AG, Kullberg BJ (2009) Fungal strategies for overcoming host innate immune response. Med Mycol 47:227–236. doi:10.1080/13693780802209082

    Article  CAS  PubMed  Google Scholar 

  17. Ramirez-Ortiz ZG, Means TK (2012) The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 3:635–646. doi:10.4161/viru.22295

    Article  PubMed Central  PubMed  Google Scholar 

  18. Farah CS, Lynch N, McCullough MJ (2010) Oral fungal infections: an update for the general practitioner. Aust Dent J 55 Suppl 1:48–54. doi:10.1111/j.1834-7819.2010.01198.x

    Article  CAS  PubMed  Google Scholar 

  19. Giri S, Kindo AJ (2012) A review of Candida species causing blood stream infection. Indian J Med Microbiol 30:270–278. doi:10.4103/0255-0857.99484

    Article  CAS  PubMed  Google Scholar 

  20. Wenisch C, Patruta S, Daxböck F, Krause R, Hörl W (2000) Effect of age on human neutrophil function. J Leukoc Biol 67:40–45

    CAS  PubMed  Google Scholar 

  21. Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, Chen S, Towle V, Belshe RB, Fikrig E, Allore HG, Montgomery RR, Shaw AC (2010) Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 184:2518–2527. doi:10.4049/jimmunol.0901022

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal A, Gupta S (2011) Impact of aging on dendritic cell functions in humans. Ageing Res Rev 10:336–345. doi:10.1016/j.arr.2010.06.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nucci M, Colombo AL, Silveira F, Richtmann R, Salomão R, Branchini ML, Spector N (1998) Risk factors for death in patients with candidemia. Risk factors for death in patients with candidemia. Infect Control Hosp Epidemiol 119:846–850

    Article  Google Scholar 

  24. Kauffman CA (2001) Fungal infections in older adults. Clin Infect Dis 33(4):550–555

    Article  CAS  PubMed  Google Scholar 

  25. Nagy I, Filkor K, Németh T, Hamari Z, Vágvolgyi C, Gácser A (2011) In vitro interactions of Candida parapsilosis wild type and lipase deficient mutants with human monocyte derived dendritic cells. BMC Microbiol 11:122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Netea MG, Gijzen K, Coolen N, Verschueren I, Figdor C, Van der Meer JW, Torensma R, Kullberg BJ (2004) Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes Infect 6:985–989

    Article  CAS  PubMed  Google Scholar 

  27. Colonna M, Pulendran B, Iwasaki A (2006) Dendritic cells at the host–pathogen interface. Nat Immunol 7:117–120

    Article  CAS  PubMed  Google Scholar 

  28. You J, Dong H, Mann ER, Knight SC, Yaqoob P (2013) Ageing impairs the T cell response to dendritic cells. Immunobiology 218:1077–1084. doi:10.1016/j.imbio.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  29. García-Rodas R, González-Camacho F, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O (2011) The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infect Immun 79:2136–2144

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from FAPESP (São Paulo Research Foundation—process numbers 09/17889-5 and 10/15271-1).

Conflict of interest

The authors have no financial conflict of interests.

Human and Animal Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Bauru School of Dentistry and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the author.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Soares Lara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, M.P.P., Pinke, K.H., Penitenti, M. et al. Aging does not affect the ability of human monocyte-derived dendritic cells to phagocytose Candida albicans . Aging Clin Exp Res 27, 785–789 (2015). https://doi.org/10.1007/s40520-015-0344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0344-1

Keywords

Navigation