Aging Clinical and Experimental Research

, Volume 27, Issue 1, pp 13–19 | Cite as

Effects of pulsed electromagnetic fields on the expression of NFATc1 and CAII in mouse osteoclast-like cells

  • Jianquan He
  • Yongsheng Zhang
  • Jian Chen
  • Suyu Zheng
  • Hui Huang
  • Xiaoyu Dong
Original Article

Abstract

Background and aims

Pulsed electromagnetic fields (PEMF) have proven to be an effective noninvasive method in the prevention and treatment of osteoporosis. This study evaluated the effects of PEMF on the expression of the NFATc1, CAII and RANK genes in mouse osteoclast-like cells.

Methods

Bone marrow from bilateral tibiae and femurs was cultured in differentiation medium in the presence of soluble macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL). After 5 days, the osteoclast-like cells were confirmed by both tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assays. The osteoclast-like cells were divided into five groups and exposed to the following treatments for 3 days: M-CSF; M-CSF + RANKL; M-CSF + RANKL + osteoprotegerin (OPG), M-CSF + RANKL + premarin (E2); and M-CSF + RANKL + PEMF. The numbers of multinucleated, TRAP-positive osteoclast-like cells and resorption pits formed were determined. The expression of NFATc1, CAII and RANK mRNA was determined with real-time fluorescent quantitative polymerase chain reaction.

Results

PEMF substantially reduced the number of osteoclast-like cells in the culture with M-CSF + RANKL. The level of NFATc1, CAII, and RANK mRNA expression was decreased in the M-CSF + RANKL + PEMF group compared to the M-CSF + RANKL group (p = 0.007, p = 0.039, p = 0.001, respectively). The mRNA expression of NFATc1, CAII, and RANK was not higher in the M-CSF + RANKL + OPG group compared to the M-CSF + RANKL + PEMF group (p = 0.682, p = 0.200, p = 0.924, respectively). In addition, there was no difference in the expression of mRNA from NFATc1, CAII, and RANK between the M-CSF + RANKL + PEMF group and the M-CSF + RANKL + E2 group (p = 0.853, p = 0.509, p = 0.664, respectively).

Conclusions

These data suggest that PEMF might modulate the process of osteoclastogenesis and subsequent bone resorption, at least partially, through NFATc1, CAII and RANK.

Keywords

Pulsed electromagnetic fields Osteoclast-like cells NFATc1mRNA CAII mRNA RANK mRNA 

References

  1. 1.
    Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57. doi:10.1007/s00198-012-2074-y PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lewiecki EM (2010) Treatment of osteoporosis with denosumab. J Maturitas 66:182–186. doi:10.1016/j.maturitas.2010.02.008 CrossRefGoogle Scholar
  3. 3.
    Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. J Cell 93:165–176. doi:10.1016/S0092-8674(00)81569-X CrossRefGoogle Scholar
  4. 4.
    Hofbauer LC, khosla S, Dunstan CR et al (2000) The roles of osteoprotegerin:a novel secreted osteoprotegerin ligand in the regulation in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12. doi:10.1359/jbmr.2000.15.1.2 PubMedCrossRefGoogle Scholar
  5. 5.
    Vega D, Maalouf NM, Sakhaee K (2007) The role of receptor activator of nuclearfactor-κB (RANK)/RANK ligand/osteoprotegerin:clinical implications. J Clin Endocrinol Metabol 92:4514–4521. doi:10.1210/jc.2007-0646 CrossRefGoogle Scholar
  6. 6.
    Hadjidakis DJ, Androulakis II (2006) Bone remodeling. J Ann NY Acad Sci 1092:385–396. doi:10.1196/annals.1365.035 CrossRefGoogle Scholar
  7. 7.
    Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. J Dev Cell 3:889–901. doi:10.1016/S1534-5807(02)00369-6 CrossRefGoogle Scholar
  8. 8.
    Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 83:170–179. doi:10.1007/s00109-004-0612-6 PubMedCrossRefGoogle Scholar
  9. 9.
    Asagiri M, Sato K, Usami T et al (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269. doi:10.1084/jem.20051150 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zelzer E, Olsen BR (2003) The genetic basis for skeletal diseases. J Nature 23:343–348. doi:10.1038/nature01659 CrossRefGoogle Scholar
  11. 11.
    Mostov K, Werb Z (1997) Journey across the osteoclast. J Sci 276:219–220. doi:10.1126/science.276.5310.219 CrossRefGoogle Scholar
  12. 12.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. J Sci 289:1504–1508. doi:10.1126/science.289.5484.1504 CrossRefGoogle Scholar
  13. 13.
    SatterSyed A, Islam MS, Rabbani KS, Talukder MS (1999) Pulsed electromagnetic fields for the treatment of bone fractures. J Bangladesh Med Res Counc Bull 25:6–10Google Scholar
  14. 14.
    Nicolakis P, Kollmitzer J, Crevenna R et al (2002) Pulsed magnetic field therapy for osteoarthritis of the knee-a double-blind sham-controlled trial. J Wien Klin Wochenschr 114:678–684Google Scholar
  15. 15.
    Garland DE, Adkins RH, Matsuno NN, Stewart CA (1999) The Effect of pulsed electromagnetic fields on osteoporosis at the knee in Individuals with spinal cord injury. J Spinal Cord Med 22:239–245PubMedGoogle Scholar
  16. 16.
    Jing D, Shen G, Huang J et al (2010) Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. J Bone 46:487–495. doi:10.1016/j.bone.2009.09.021 CrossRefGoogle Scholar
  17. 17.
    Chen J, He H-C, Xia Q-J et al (2010) Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized Rat osteoclast-like cells. J Connective Tissue Res 51:1–7. doi:10.3109/03008200902855917 CrossRefGoogle Scholar
  18. 18.
    Tabrah FL, Ross P, Hoffmeier M, Gilbert FJr (1998) Clinical report on long-term bone density after short-term EMF application. J Bioelectromagnetics 19: 75–78. doi: 10.1002/(SICI)1521-186X(1998)19:2<75::AID-BEM3>3.0.CO;2-0Google Scholar
  19. 19.
    Tabrah F, Hoffmeier M, Gilbert F Jr, Batkin S, Bassett CA (1990) Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 5:437–442. doi:10.1002/jbmr.5650050504 PubMedCrossRefGoogle Scholar
  20. 20.
    Pavlos NJ, Xu JK, Riedel D et al (2005) Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol J Cell Bio 125:5253–5269. doi:10.1128/MCB.25.12.5253-5269.2005 CrossRefGoogle Scholar
  21. 21.
    Chen J, He JQ, Zhen SY, Huang L (2012) OPG inhibits gene expression of RANK and CAII in mouse osteoclast-like cells. J Rheumatol Int 32:3393–3398. doi:10.1007/s00296-011-2338-4 Google Scholar
  22. 22.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. J Methods 25:402–408. doi:10.1006/meth.2001.1262 CrossRefGoogle Scholar
  23. 23.
    Bell NH (2003) RANK ligand and the regulation of skeletal remodeling. J Clin Invest 111:1120–1122. doi:10.1172/JCI18358 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. J Arch Biochem Biophys 473:139–146. doi:10.1016/j.abb.2008.03.018 CrossRefGoogle Scholar
  25. 25.
    Grimaud E, Soubigou L, Couillaud S et al (2003) Receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Path 163:2021–2031. doi:10.1016/S0002-9440(10)63560-2 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. J Bone 40:251–264. doi:10.1016/j.bone.2006.09.023 CrossRefGoogle Scholar
  27. 27.
    Ishida N, Hayashi K, Hoshijima M et al (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277:41147–41156. doi:10.1074/jbc.M205063200 PubMedCrossRefGoogle Scholar
  28. 28.
    Takayanagi H (2007) The role of NFAT in osteoclast formation. J Annals NY Acad Sci 1116:227–237. doi:10.1196/annals.1402.071 CrossRefGoogle Scholar
  29. 29.
    Kanis JA, Gluer CC (2001) An update on the diagnosis and assessment of osteoporosis with densitometry. J Osteoporos Int 11:192–202. doi:10.1007/s001980050281 CrossRefGoogle Scholar
  30. 30.
    Markov MS (2007) Pulsed electromagnetic field therapy history, state of the art and future. Environmental 27:465–475. doi:10.1007/s10669-007-9128-2 Google Scholar
  31. 31.
    Ibiwoye MO, Powell KA, Grabiner MD (2004) Bone mass is preserved in a critical-sized osteotomy by low energy pulsed electromagnetic fields as quantitated by in vivo micro-computed tomography. J Orthop Res 22:1086–1093. doi:10.1016/j.orthres.2003.12.017 PubMedCrossRefGoogle Scholar
  32. 32.
    Sert C, Mustafa D, Düz MZ, Aksen F, Kaya A (2002) The preventive effect on bone loss of 50 Hz, 1 mT electromagnetic field in ovariectomized rats. J Bone Miner Metab 20:345–349. doi:10.1007/s007740200050 PubMedCrossRefGoogle Scholar
  33. 33.
    Chang K, Chang WH (2003) Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model:aprostagl and in E2-associated process. J Bioelectromagnet 24:189–198. doi:10.1002/bem.10078 CrossRefGoogle Scholar
  34. 34.
    Huang L, Wang W, Xiao D, Yang L, Lei Z, He C (2008) Effect of pulsed electromagnetic fields of different treatment time on bone mineral density of femur in ovariectomized rats. Zhong Guo Xiu Fu Chong Jian Wai Ke Za Zhi 22:548–550Google Scholar
  35. 35.
    Yang YH, He CQ, Yang L, Wang W, Lei ZJ (2008) Effects of different intensity pulsed electromagnetic fields on serum estradiol of ovariectomized rats. Sichuan Da Xue Xue Bao Yi Xue Ban 39:256–258PubMedGoogle Scholar
  36. 36.
    Yang L, Lei Z, He C (2006) Clinical observation of low frequency pulse electromagnetic field on treatment of osteoporosis. J Chin J Osteoporos 12:24–25. doi:10.3969/j.issn.1006-7108.2006.06.013 Google Scholar
  37. 37.
    Luo QL, Li S-S, He C, He HC, Yang L, Deng L (2009) Pulse electromagnetic fields effects on serum E2 levels, chondrocyte apoptosis, and matrix metalloproteinase-13 expression in ovariectomized rats. J Rheumatol Int 29:927–935. doi:10.1007/s00296-008-0782-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jianquan He
    • 1
  • Yongsheng Zhang
    • 1
  • Jian Chen
    • 1
  • Suyu Zheng
    • 1
  • Hui Huang
    • 1
  • Xiaoyu Dong
    • 1
  1. 1.Department of RehabilitationZhongshan Hospital Xiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations