Skip to main content

Advertisement

Log in

Evaluation of the relationship between serum ferritin and insulin resistance and visceral adiposity index (VAI) in women with polycystic ovary syndrome

  • Original Article
  • Published:
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity Aims and scope Submit manuscript

Abstract

Purpose

There is a relationship between polycystic ovary syndrome (PCOS) and adipose tissue dysfunction (ADD), but this relationship is not clear. It has been recently shown that iron accumulation in adipose tissue is among the causes of adipose tissue dysfunction. Data on adipose tissue dysfunction in women with PCOS are insufficient. In this study, we aimed to evaluate the relationship between serum ferritin levels (iron accumulation biomarker) and visceral adiposity index (an indicator of adipose tissue dysfunction).

Methods

The study is a case–control study. Women with diagnosed PCOS with 2003 Rotterdam Diagnostic Criteria (n = 40) were compared with non-PCOS group (n = 40). In this study, the cholesterol ratios, the homeostatic model evaluation index for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity control index were calculated using biochemical parameters, and the visceral adiposity index (VAI) and the lipid accumulation product (LAP) were calculated using both anthropometric and biochemical parameters. In this study, insulin resistance was evaluated by HOMA-IR and adipose tissue dysfunction was evaluated by VAI index.

Results

According to the results of this study, women with PCOS have a worse metabolic status than women without PCOS. However, this has been shown only in overweight and obese women, not in women with normal weight.

Conclusion

As a result, the presence of obesity in women with PCOS exacerbates metabolic status.

Level of evidence

Level V, cross-sectional descriptive study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee I, Cooney LG, Saini S, Smith ME, Sammel MD, Allison KC, Dokras A (2017) Increased risk of disordered eating in polycystic ovary syndrome. Fertil Steril 107(3):796–802. https://doi.org/10.1016/j.fertnstert.2016.12.014

    Article  PubMed  Google Scholar 

  2. Akgül S, Düzçeker Y, Kanbur N, Derman O (2018) Do different diagnostic criteria impact polycystic ovary syndrome diagnosis for adolescents? J Pediatr Adolesc Gynecol 31(3):258–262. https://doi.org/10.1016/j.jpag.2017.12.002

    Article  PubMed  Google Scholar 

  3. Sirmans SM, Pate KA (2014) Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 6:1–13. https://doi.org/10.2147/CLEP.S37559

    Article  Google Scholar 

  4. Mohammad MB, Seghinsara AM (2017) Polycystic ovary syndrome (PCOS), diagnostic criteria, and AMH. Asian Pac J Cancer Prev 18(1):17–21. https://doi.org/10.22034/APJCP.2017.18.1.17

    Article  PubMed Central  Google Scholar 

  5. Ndefo UA, Eaton A, Green MR (2013) Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. P T 38(6):336–355

    PubMed  PubMed Central  Google Scholar 

  6. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

    Article  Google Scholar 

  7. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE (2006) Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 91(11):4237–4245. https://doi.org/10.1210/jc.2006-0178

    Article  CAS  PubMed  Google Scholar 

  8. Barbosa G, de Sá LBPC, Rocha DRTW, Arbex AK (2016) Polycystic ovary syndrome (PCOS) and fertility. Open J Endocr Metab Dis 6(1):58–65. https://doi.org/10.4236/ojemd.2016.61008

    Article  Google Scholar 

  9. Abruzzese GA, Cerrrone GE, Gamez JM, Graffigna MN, Belli S, Lioy G, Mormandi E, Otero P, Levalle OA, Motta AB (2017) Lipid accumulation product (LAP) and visceral adiposity index (VAI) as markers of insulin resistance and metabolic associated disturbances in young argentine women with polycystic ovary syndrome. Horm Metab Res 49(01):23–29. https://doi.org/10.1055/s-0042-113463

    Article  CAS  PubMed  Google Scholar 

  10. Moghetti P (2016) Insulin resistance and polycystic ovary syndrome. Curr Pharm Des 22(36):5526–5534. https://doi.org/10.2174/1381612822666160720155855

    Article  CAS  PubMed  Google Scholar 

  11. Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6(1):a009191. https://doi.org/10.1101/cshperspect.a009191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall JC, Dunaif A (2012) Should all women with PCOS be treated for insulin resistance? Fertil Steril 97(1):18–22. https://doi.org/10.1016/j.fertnstert.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baptiste CG, Battista M-C, Trottier A, Baillargeon J-P (2010) Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol 122(1–3):42–52. https://doi.org/10.1016/j.jsbmb.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  14. Bremer AA, Miller WL (2008) The serine phosphorylation hypothesis of polycystic ovary syndrome: a unifying mechanism for hyperandrogenemia and insulin resistance. Fertil Steril 89(5):1039–1048. https://doi.org/10.1016/j.fertnstert.2008.02.091

    Article  CAS  PubMed  Google Scholar 

  15. Zhou K, Zhang J, Xu L, Wu T, Lim CED (2016) Chinese herbal medicine for subfertile women with polycystic ovarian syndrome. Cochrane Database Syst Rev 10:CD007535. https://doi.org/10.1002/14651858.CD007535.pub3

    Article  PubMed  Google Scholar 

  16. Cadagan D, Khan R, Amer S (2014) Female adipocyte androgen synthesis and the effects of insulin. Mol Genet Metab Rep 1:254–263. https://doi.org/10.1016/j.ymgmr.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daka B, Rosen T, Jansson PA, Råstam L, Larsson CA, Lindblad U (2013) Inverse association between serum insulin and sex hormone-binding globulin in a population survey in Sweden. Endocr Connect 2(1):18–22. https://doi.org/10.1530/EC-12-0057

    Article  CAS  PubMed  Google Scholar 

  18. Condorelli R, Calogero A, Di Mauro M, Cannarella R, Rosta G, La Vignera S (2018) Androgen excess and metabolic disorders in women with PCOS: beyond the body mass index. J Endocrinol Invest 41(4):383–388. https://doi.org/10.1007/s40618-017-0762-3

    Article  CAS  PubMed  Google Scholar 

  19. González F (2012) Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 77(4):300–305. https://doi.org/10.1016/j.steroids.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  20. González F, Sia CL, Stanczyk FZ, Blair HE, Krupa ME (2012) Hyperandrogenism exerts an anti-inflammatory effect in obese women with polycystic ovary syndrome. Endocrine 42(3):726–735. https://doi.org/10.1007/s12020-012-9728-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrea L, Marzullo P, Muscogiuri G, Di Somma C, Scacchi M, Orio F, Aimaretti G, Colao A, Savastano S (2018) Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr Res Rev 31(2):291–301. https://doi.org/10.1017/S0954422418000136

    Article  CAS  PubMed  Google Scholar 

  22. Salama AA, Amine EK, Salem HAE, Abd El Fattah NK (2015) Anti-inflammatory dietary combo in overweight and obese women with polycystic ovary syndrome. N Am J Med Sci 7(7):310–316. https://doi.org/10.4103/1947-2714.161246

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lim SS, Davies M, Norman RJ, Moran L (2012) Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 18(6):618–637. https://doi.org/10.1093/humupd/dms030

    Article  CAS  PubMed  Google Scholar 

  24. Kataoka J, Tassone EC, Misso M, Joham AE, Stener-Victorin E, Teede H, Moran LJ (2017) Weight management interventions in women with and without PCOS: a systematic review. Nutrients 9(9):996. https://doi.org/10.3390/nu9090996

    Article  CAS  PubMed Central  Google Scholar 

  25. Merviel P, Bouée S, Menard M, Le Martelot M-T, Roche S, Lelièvre C, Chabaud J-J, Jacq C, Drapier H, Beauvillard D (2017) Quelles stimulations pour quelles femmes: le syndrome des ovaires polykystiques (SOPK). Gynécologie Obstétrique Fertilité Sénologie 45(11):623–631. https://doi.org/10.1016/j.gofs.2017.10.001

    Article  CAS  Google Scholar 

  26. Barrea L, Arnone A, Annunziata G, Muscogiuri G, Laudisio D, Salzano C, Pugliese G, Colao A, Savastano S (2019) Adherence to the mediterranean diet, dietary patterns and body composition in women with polycystic ovary syndrome (PCOS). Nutrients 11(10):2278. https://doi.org/10.3390/nu11102278

    Article  CAS  PubMed Central  Google Scholar 

  27. Moran L, Lombard C, Noakes M (2009) Is there a need for clinical practice guidelines for the dietary treatment of women with polycystic ovary syndrome? Nutr Diet 66(4):249–251. https://doi.org/10.1111/j.1747-0080.2009.01379.x

    Article  Google Scholar 

  28. Villa J, Pratley RE (2011) Adipose tissue dysfunction in polycystic ovary syndrome. Curr Diab Rep 11(3):179–184. https://doi.org/10.1007/s11892-011-0189-8

    Article  CAS  PubMed  Google Scholar 

  29. Kang SM, Yoon JW, Ahn HY, Kim SY, Lee KH, Shin H, Choi SH, Park KS, Jang HC, Lim S (2011) Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS ONE 6(11):e27694. https://doi.org/10.1371/journal.pone.0027694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karastergiou K, Smith SR, Greenberg AS, Fried SK (2012) Sex differences in human adipose tissues–the biology of pear shape. Biol Sex Differ 3(1):13. https://doi.org/10.1186/2042-6410-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  31. Delitala AP, Capobianco G, Delitala G, Cherchi PL, Dessole S (2017) Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch Gynecol Obstet 296(3):405–419. https://doi.org/10.1007/s00404-017-4429-2

    Article  CAS  PubMed  Google Scholar 

  32. O’Reilly MW, House PJ, Tomlinson JW (2014) Understanding androgen action in adipose tissue. J Steroid Biochem Mol Biol 143:277–284. https://doi.org/10.1016/j.jsbmb.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  33. Spritzer PM, Lecke SB, Satler F, Morsch DM (2015) Adipose tissue dysfunction, adipokines, and low-grade chronic inflammation in polycystic ovary syndrome. Reproduction 149(5):R219–R227. https://doi.org/10.1530/REP-14-0435

    Article  CAS  PubMed  Google Scholar 

  34. Mannerås-Holm L, Leonhardt H, Kullberg J, Jennische E, Odén A, Holm G, Hellström M, Lönn L, Olivecrona G, Stener-Victorin E (2011) Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab 96(2):E304–E311. https://doi.org/10.1210/jc.2010-1290

    Article  CAS  PubMed  Google Scholar 

  35. Westerink J, Olijhoek JK, Koppen A, Faber DR, Kalkhoven E, Monajemi H, van Asbeck BS, van der Graaf Y, Visseren FL (2013) The relation between body iron stores and adipose tissue function in patients with manifest vascular disease. Eur J Clin Invest 43(12):1240–1249. https://doi.org/10.1111/eci.12165

    Article  CAS  PubMed  Google Scholar 

  36. Hubler MJ, Peterson KR, Hasty AH (2015) Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol Metab 26(2):101–109. https://doi.org/10.1016/j.tem.2014.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stechemesser L, Eder SK, Wagner A, Patsch W, Feldman A, Strasser M, Auer S, Niederseer D, Huber-Schönauer U, Paulweber B (2017) Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism. Mol Metab 6(1):38–47. https://doi.org/10.1016/j.molmet.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  38. Al-Hakeim HK (2012) Correlation between iron status parameters and hormone levels in women with polycystic ovary syndrome. Clin Med Insights Womens Health 5:1–8. https://doi.org/10.4137/CMWH.S8780

    Article  CAS  Google Scholar 

  39. Kim JW, Kang KM, Yoon TK, Shim SH, Lee WS (2014) Study of circulating hepcidin in association with iron excess, metabolic syndrome, and BMP-6 expression in granulosa cells in women with polycystic ovary syndrome. Fertil Steril 102(2):548–554.e542. https://doi.org/10.1016/j.fertnstert.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  40. Acton RT, Barton JC, Barton JC (2015) Serum ferritin, insulin resistance, and metabolic syndrome: clinical and laboratory associations in 769 non-Hispanic whites without diabetes mellitus in the HEIRS study. Metab Syndr Relat Disord 13(2):57–63. https://doi.org/10.1089/met.2014.0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernández-Real JM, McClain D, Manco M (2015) Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care 38(11):2169–2176. https://doi.org/10.2337/dc14-3082

    Article  CAS  PubMed  Google Scholar 

  42. Dongiovanni P, Fracanzani AL, Fargion S, Valenti L (2011) Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol 55(4):920–932. https://doi.org/10.1016/j.jhep.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  43. Liu B-w, Xuan X-m, Liu J-r, Li F-n, Yin F-Z (2015) The relationship between serum ferritin and insulin resistance in different glucose metabolism in nonobese Han adults. Int J Endocrinol 2015:1–5. https://doi.org/10.1155/2015/642194

    Article  CAS  Google Scholar 

  44. Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T (2016) Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu Rev Nutr 36:241–273. https://doi.org/10.1146/annurev-nutr-071715-050939

    Article  CAS  PubMed  Google Scholar 

  45. Dongiovanni P, Ruscica M, Rametta R, Recalcati S, Steffani L, Gatti S, Girelli D, Cairo G, Magni P, Fargion S (2013) Dietary iron overload induces visceral adipose tissue insulin resistance. Am J Pathol 182(6):2254–2263. https://doi.org/10.1016/j.ajpath.2013.02.019

    Article  CAS  PubMed  Google Scholar 

  46. Rumberger JM, Peters T, Burrington C, Green A (2004) Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes. Diabetes 53(10):2535–2541. https://doi.org/10.2337/diabetes.53.10.2535

    Article  CAS  PubMed  Google Scholar 

  47. Green A, Basile R, Rumberger JM (2006) Transferrin and iron induce insulin resistance of glucose transport in adipocytes. Metabolism 55(8):1042–1045. https://doi.org/10.1016/j.metabol.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  48. Hershkop K, Besor O, Santoro N, Pierpont B, Caprio S, Weiss R (2016) Adipose insulin resistance in obese adolescents across the spectrum of glucose tolerance. J Clin Endocrinol Metab 101(6):2423–2431. https://doi.org/10.1210/jc.2016-1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wlazlo N, Van Greevenbroek MM, Ferreira I, Jansen EH, Feskens EJ, Van Der Kallen CJ, Schalkwijk CG, Bravenboer B, Stehouwer CD (2013) Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: the cohort on diabetes and atherosclerosis maastricht (CODAM) study. Diabetes Care 36(2):309–315. https://doi.org/10.2337/dc12-0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Makki K, Froguel P, Wolowczuk I (2013) Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013:139239. https://doi.org/10.1155/2013/139239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma X, Pham VT, Mori H, MacDougald OA, Shah YM, Bodary PF (2017) Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity. PLoS ONE 12(6):e0179889. https://doi.org/10.1371/journal.pone.0179889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kimura Y, Yasuda K, Kurotani K, Akter S, Kashino I, Hayabuchi H, Sato M, Mizoue T (2017) Circulating ferritin concentrations are differentially associated with serum adipokine concentrations in Japanese men and premenopausal women. Eur J Nutr 56(8):2497–2505. https://doi.org/10.1007/s00394-016-1285-y

    Article  CAS  PubMed  Google Scholar 

  53. Aso Y, Takebayashi K, Wakabayashi S, Momobayashi A, Sugawara N, Terasawa T, Naruse R, Hara K, Suetsugu M, Morita K (2010) Relation between serum high molecular weight adiponectin and serum ferritin or prohepcidin in patients with type 2 diabetes. Diabetes Res Clin Pract 90(3):250–255. https://doi.org/10.1016/j.diabres.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  54. Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D, Cooksey RC, Gabrielsen D, Adams TD, Hunt SC (2012) Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest 122(10):3529–3540. https://doi.org/10.1172/JCI44421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Juanola-Falgarona M, Cándido-Fernández J, Salas-Salvado J, Martínez-González MA, Estruch R, Fiol M, Arija-Val V, Bulló M, Investigators PS (2013) Association between serum ferritin and osteocalcin as a potential mechanism explaining the iron-induced insulin resistance. PLoS ONE 8(10):e76433. https://doi.org/10.1371/journal.pone.0076433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simcox JA, McClain DA (2013) Iron and diabetes risk. Cell Metab 17(3):329–341. https://doi.org/10.1016/j.cmet.2013.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moreno-Navarrete JM, Ortega F, Rodríguez A, Latorre J, Becerril S, Sabater-Masdeu M, Ricart W, Frühbeck G, Fernández-Real JM (2017) HMOX1 as a marker of iron excess-induced adipose tissue dysfunction, affecting glucose uptake and respiratory capacity in human adipocytes. Diabetologia 60(5):915–926. https://doi.org/10.1007/s00125-017-4228-0

    Article  CAS  PubMed  Google Scholar 

  58. Valenti L, Dongiovanni P (2012) Iron and the adipocyte: beware the liver. Immuno Gastroenterol 1(2):74. https://doi.org/10.7178/ig.14

    Article  Google Scholar 

  59. Sam S (2015) Adiposity and metabolic dysfunction in polycystic ovary syndrome. Horm Mol Biol Clin Investig 21(2):107–116. https://doi.org/10.1515/hmbci-2015-0008

    Article  CAS  PubMed  Google Scholar 

  60. Moore AM, Campbell RE (2016) The neuroendocrine genesis of polycystic ovary syndrome: a role for arcuate nucleus GABA neurons. J Steroid Biochem Mol Biol 160:106–117. https://doi.org/10.1016/j.jsbmb.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  61. Moore AM, Campbell RE (2017) Polycystic ovary syndrome: understanding the role of the brain. Front Neuroendocrinol 46:1–14. https://doi.org/10.1016/j.yfrne.2017.05.002

    Article  PubMed  Google Scholar 

  62. Feng Y, Johansson J, Shao R, Mannerås L, Fernandez-Rodriguez J, Billig H, Stener-Victorin E (2009) Hypothalamic neuroendocrine functions in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture. PLoS ONE 4(8):e6638. https://doi.org/10.1371/journal.pone.0006638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blank SK, McCartney CR, Helm KD, Marshall JC (2007) Neuroendocrine effects of androgens in adult polycystic ovary syndrome and female puberty. Seminn Reprod Med 25(5):352–359. https://doi.org/10.1055/s-2007-984741

    Article  CAS  Google Scholar 

  64. Solorzano CMB, Beller JP, Abshire MY, Collins JS, McCartney CR, Marshall JC (2012) Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 77(4):332–337. https://doi.org/10.1016/j.steroids.2011.12.007

    Article  CAS  Google Scholar 

  65. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7(4):219–231. https://doi.org/10.1038/nrendo.2010.217

    Article  CAS  PubMed  Google Scholar 

  66. Johansson J, Stener-Victorin E (2013) Polycystic ovary syndrome: effect and mechanisms of acupuncture for ovulation induction. Evid Based Complement Alternat Med 2013:762615. https://doi.org/10.1155/2013/762615

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stamatiades GA, Kaiser UB (2018) Gonadotropin regulation by pulsatile GnRH: signaling and gene expression. Mol Cell Endocrinol 463:131–141. https://doi.org/10.1016/j.mce.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  68. Lanzone A, Petraglia F, Fulghesu AM, Ciampelli M, Caruso A, Mancuso S (1995) Corticotropin-releasing hormone induces an exaggerated response of adrenocorticotropic hormone and cortisol in polycystic ovary syndrome. Fertil Steril 63(6):1195–1199. https://doi.org/10.1016/s0015-0282(16)57596-7

    Article  CAS  PubMed  Google Scholar 

  69. Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumesic DA (2013) Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids 78(9):920–926. https://doi.org/10.1016/j.steroids.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chirumbolo S, Rossi AP, Rizzatti V, Zoico E, Franceschetti G, Girelli D, Zamboni M (2015) Iron primes 3T3-L1 adipocytes to a TLR4-mediated inflammatory response. Nutrition 31(10):1266–1274. https://doi.org/10.1016/j.nut.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  71. Echiburú B, Pérez-Bravo F, Galgani JE, Sandoval D, Saldías C, Crisosto N, Maliqueo M, Sir-Petermann T (2018) Enlarged adipocytes in subcutaneous adipose tissue associated to hyperandrogenism and visceral adipose tissue volume in women with polycystic ovary syndrome. Steroids 130:15–21. https://doi.org/10.1016/j.steroids.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  72. Lee R, Nieman D (2012) Nutritional assessment 6th, edition edn. McGraw-Hill Education, New York

    Google Scholar 

  73. Nuttall FQ (2015) Body mass index: obesity, BMI, and health: a critical review. Nutr Today 50(3):117–128. https://doi.org/10.1097/NT.0000000000000092

    Article  PubMed  PubMed Central  Google Scholar 

  74. WHO (2000) Obesity: preventing and managing the global epidemic Report of a WHO Consultation (WHO Technical Report Series 894)

  75. Harrington DM, Staiano AE, Broyles ST, Gupta AK, Katzmarzyk PT (2013) Waist circumference measurement site does not affect relationships with visceral adiposity and cardiometabolic risk factors in children. Pediatr Obes 8(3):199–206. https://doi.org/10.1111/j.2047-6310.2012.00106.x

    Article  CAS  PubMed  Google Scholar 

  76. Ezeh U, Pall M, Mathur R, Azziz R (2014) Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome. Hum Reprod 29(7):1508–1517. https://doi.org/10.1093/humrep/deu096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun W, Di Zhang ZW, Sun J, Xu B, Chen Y, Ding L, Huang X, Lv X, Lu J, Bi Y (2016) Insulin resistance is associated with total bile acid level in type 2 diabetic and nondiabetic population: a cross-sectional study. Medicine (Baltimore) 95(10):e2278. https://doi.org/10.1097/MD.0000000000002778

    Article  CAS  Google Scholar 

  78. Uzunlulu M, Oğuz A, Aslan G, Karadağ F (2009) Cut-off values for waist circumference in Turkish population: is there a threshold to predict insulin resistance. Turk Kardiyol Dern Ars 37(Suppl 6):17–23

    PubMed  Google Scholar 

  79. Türkiye Endokrinoloji ve Metabolizma Derneği Metabolik Sendrom Çalışma Grubu (2009) Metabolik Sendrom Kilavuzu. Tuna Matbaacılık, Ankara

  80. Wen J, Zhong Y, Kuang C, Liao J, Chen Z, Yang Q (2017) Lipoprotein ratios are better than conventional lipid parameters in predicting arterial stiffness in young men. J Clin Hypertens 19(8):771–776. https://doi.org/10.1111/jch.13038

    Article  CAS  Google Scholar 

  81. Du Y, Chen J, Chen M-H, Yang S-H, Li S, Guo Y-L, Zhu C-G, Xu R-X, Dong Q, Li J-J (2016) Relationship of lipid and lipoprotein ratios with coronary severity in patients with new on-set coronary artery disease complicated with type 2 diabetics. J Geriatr Cardiol 13(8):685–692. https://doi.org/10.11909/j.issn.1671-5411.2016.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, Galluzzo A (2010) Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 33(4):920–922. https://doi.org/10.2337/dc09-1825

    Article  PubMed  PubMed Central  Google Scholar 

  83. Agrawal H, Aggarwal K, Jain A (2019) Visceral adiposity index: simple tool for assessing cardiometabolic risk in women with polycystic ovary syndrome. Indian J Endocrinol Metab 23(2):232–237. https://doi.org/10.4103/ijem.IJEM_559_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Amato MC, Giordano C (2014) Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol 2014:1–7. https://doi.org/10.1155/2014/730827

    Article  Google Scholar 

  85. Kahn HS (2005) The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5(1):26. https://doi.org/10.1186/1471-2261-5-26

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kiranmayee D, Kavya K, Himabindu Y, Sriharibabu M, Madhuri GLJ, Venu S (2017) Correlations between anthropometry and lipid profile in women with PCOS. J Hum Reprod Sci 10(3):167–172. https://doi.org/10.4103/jhrs.JHRS_108_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deng Y, Zhang Y, Li S, Zhou W, Ye L, Wang L, Tao T, Gu J, Yang Z, Zhao D (2017) Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-14534-2

    Article  CAS  Google Scholar 

  88. Behboudi-Gandevani S, Tehrani FR, Cheraghi L, Azizi F (2016) Could “a body shape index” and “waist to height ratio” predict insulin resistance and metabolic syndrome in polycystic ovary syndrome? Eur J Obstet Gynecol Reprod Biol 205:110–114. https://doi.org/10.1016/j.ejogrb.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  89. Huddleston HG, Quinn MM, Kao CN, Lenhart N, Rosen MP, Cedars MI (2017) Women with polycystic ovary syndrome demonstrate worsening markers of cardiovascular risk over the short-term despite declining hyperandrogenaemia: Results of a longitudinal study with community controls. Clin Endocrinol (Oxf) 87(6):775–782. https://doi.org/10.1111/cen.13497

    Article  CAS  Google Scholar 

  90. Geronikolou SA, Bacopoulou F, Cokkinos D (2017) Bioimpedance measurements in adolescents with polycystic ovary syndrome: a pilot study. Adv Exp Med Biol 987:291–299. https://doi.org/10.1007/978-3-319-57379-3_26

    Article  PubMed  Google Scholar 

  91. Macruz CF, Lima SM, Salles JE, da Silva GM, Scalissi NM (2017) Assessment of the body composition of patients with polycystic ovary syndrome using dual-energy X-ray absorptiometry. Int J Gynaecol Obstet 136(3):285–289. https://doi.org/10.1002/ijgo.12066

    Article  CAS  PubMed  Google Scholar 

  92. Barber TM, Golding SJ, Alvey C, Wass JA, Karpe F, Franks S, McCarthy MI (2008) Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. J Clin Endocrinol Metab 93(3):999–1004. https://doi.org/10.1210/jc.2007-2117

    Article  CAS  PubMed  Google Scholar 

  93. Robinson S, Chan SP, Spacey S, Anyaoku V, Johnston DG, Franks S (1992) Postprandial thermogenesis is reduced in polycystic ovary syndrome and is associated with increased insulin resistance. Clin Endocrinol (Oxf) 36(6):537–543. https://doi.org/10.1111/j.1365-2265.1992.tb02262.x

    Article  CAS  Google Scholar 

  94. Hirschberg AL (2012) Sex hormones, appetite and eating behaviour in women. Maturitas 71(3):248–256. https://doi.org/10.1016/j.maturitas.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  95. Durmus U, Duran C, Ecirli S (2017) Visceral adiposity index levels in overweight and/or obese, and non-obese patients with polycystic ovary syndrome and its relationship with metabolic and inflammatory parameters. J Endocrinol Invest 40(5):487–497. https://doi.org/10.1007/s40618-016-0582-x

    Article  CAS  PubMed  Google Scholar 

  96. Fulghesu A, Magnini R, Portoghese E, Angioni S, Minerba L, Melis GB (2010) Obesity-related lipid profile and altered insulin incretion in adolescents with polycystic ovary syndrome. J Adolesc Health 46(5):474–481. https://doi.org/10.1016/j.jadohealth.2009.10.008

    Article  PubMed  Google Scholar 

  97. Kim JJ, Chae S, Choi Y, Hwang KR, Song SH, Yoon S, Kim SM, Ku S-Y, Kim S, Kim J (2013) Atherogenic changes in low-density lipoprotein particle profiles were not observed in non-obese women with polycystic ovary syndrome. Hum Reprod 28(5):1354–1360. https://doi.org/10.1093/humrep/det057

    Article  CAS  PubMed  Google Scholar 

  98. Berneis K, Rizzo M, Hersberger M, Rini G, Di Fede G, Pepe I, Spinas G, Carmina E (2009) Atherogenic forms of dyslipidaemia in women with polycystic ovary syndrome. Int J Clin Pract 63(1):56–62. https://doi.org/10.1111/j.1742-1241.2008.01897.x

    Article  CAS  PubMed  Google Scholar 

  99. Zheng S-H, Li X-L (2016) Visceral adiposity index as a predictor of clinical severity and therapeutic outcome of PCOS. Gynecol Endocrinol 32(3):177–183. https://doi.org/10.3109/09513590.2015.1111327

    Article  CAS  PubMed  Google Scholar 

  100. Macut D, Antić IB, Bjekić-Macut J, Panidis D, Tziomalos K, Milutinović DV, Stanojlović O, Kastratović-Kotlica B, Petakov M, Milić N (2016) Lipid accumulation product is associated with metabolic syndrome in women with polycystic ovary syndrome. Hormones (Athens) 15(1):35–44. https://doi.org/10.14310/horm.2002.1592

    Article  Google Scholar 

  101. Escobar-Morreale HF (2012) Iron metabolism and the polycystic ovary syndrome. Trends Endocrinol Metab 23(10):509–515. https://doi.org/10.1016/j.tem.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  102. Sharifi F, Mazloomi S, Mousavinasab N (2011) High serum ferritin concentrations in polycystic ovary syndrome is not related to insulin resistance. Iran J Diabetes Obes 3(2):47–53

    Google Scholar 

  103. Lopez GP, Fernandez AB, Menacho M, Perez MJL, Araque NA, Molina JMR, Agelan JLL (2010) Serum ferritin in female-to-male transsexuals with polycystic ovary syndrome. Endocrine Abstracts 22:P474

    Google Scholar 

  104. Escobar-Morreale HF, Luque-Ramírez M, Álvarez-Blasco F, Botella-Carretero JI, Sancho J, San Millán JL (2005) Body iron stores are increased in overweight and obese women with polycystic ovary syndrome. Diabetes Care 28(8):2042–2044. https://doi.org/10.2337/diacare.28.8.2042

    Article  PubMed  Google Scholar 

  105. Ko PC, Huang SY, Hsieh CH, Hsu MI, Hsu C-S (2015) Serum ferritin levels and polycystic ovary syndrome in obese and nonobese women. Taiwan J Obstet Gynecol 54(4):403–407. https://doi.org/10.1016/j.tjog.2014.06.005

    Article  PubMed  Google Scholar 

  106. Luque-Ramírez M, Alvarez-Blasco F, Botella-Carretero JI, Sanchón R, San Millán JL, Escobar-Morreale HF (2007) Increased body iron stores of obese women with polycystic ovary syndrome are a consequence of insulin resistance and hyperinsulinism and are not a result of reduced menstrual losses. Diabetes Care 30(9):2309–2313. https://doi.org/10.2337/dc07-0642

    Article  CAS  PubMed  Google Scholar 

  107. Ramezani Tehrani F, Minooee S, Azizi F (2014) Comparison of various adiposity indexes in women with polycystic ovary syndrome and normo-ovulatory non-hirsute women: a population-based study. Eur J Endocrinol 171(2):199–207. https://doi.org/10.1530/eje-14-0094

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all study participants and staff in Clinic of Obstetrics and Gynecology and Reproduction Treatment Center at Gazi University Medical School Hospital that contributed to the project.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Should individual references be required, all authors listed have contributed sufficiently to the study to be included as authors. However, BBG and YA contributed to the writing of the article. SC and NB contributed to the collecting of the data, if one needs to mention it individually.

Corresponding author

Correspondence to Büşra Başar Gökcen.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author declares that there is no conflict of interest.

Ethics approval

The “Ethics Committee Approval” of the present study was taken from the Zekai Tahir Burak Women's Health Research and Education Hospital, the Directorate of the Clinical Research Ethics Committee dated 18.04.2017 under decision number 65/2017. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institution and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The reason we got our ethics committee approval from Zekai Tahir Burak Women's Health Research and Education Hospital is because our case group is women with PCOS and this hospital is a branch hospital working in this field. However, considering the location, the case group was taken from Gazi Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study in accordance with the declaration of Helsinki.

Consent to participate

The patients have signed an informed consent form indicating that they volunteered to work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başar Gökcen, B., Akdevelioğlu, Y., Canan, S. et al. Evaluation of the relationship between serum ferritin and insulin resistance and visceral adiposity index (VAI) in women with polycystic ovary syndrome. Eat Weight Disord 26, 1581–1593 (2021). https://doi.org/10.1007/s40519-020-00980-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40519-020-00980-x

Keywords

Navigation