Skip to main content

Advertisement

Log in

Improving the Representation of Climate Risks in Long-Term Electricity Systems Planning: a Critical Review

  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Electricity systems face substantial climate risks which are escalating due to electrification, renewable energy intermittency, population changes, and the intensifying impacts of climate change such as extreme temperatures and weather-induced infrastructure damage. This critical review investigates climate risks to the electricity sector and scrutinizes the methodologies used to represent climate risk in long-term electricity system planning studies.

Recent Findings

Climate risks to electricity systems are driven by extreme weather, average weather, technology, and other social and technological factors. All are expected to evolve in the future. Future climate risks to electricity systems depend on interactions between each, and thus assessing future climate risks to electricity systems requires exploring a wide range of possible futures.

Summary

Many studies rely on weather data and socio-economic scenarios that are inadequate to fully characterize climate risks to present and future electricity systems. We advocate for more holistic assessments that incorporate comprehensive weather data, acknowledge dynamic multi-sector interactions, and employ adaptive and robust methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain Y, Jain R. India and Pakistan emerge as early victims of extreme heat conditions due to climate injustice. BMJ. 2022;377:1207. https://doi.org/10.1136/bmj.o1207. (Chap Opinion).

    Article  Google Scholar 

  2. Doss-Gollin J, Farnham DJ, Lall U, Modi V, How unprecedented was the February 2021 Texas cold snap? Environ Res Lett; 2021. https://doi.org/10.1088/1748-9326/ac0278.

  3. Busby JW, Baker K, Bazilian MD, Gilbert AQ, Grubert E, Rai V, Rhodes JD, Shidore S, Smith CA, Webber ME. Cascading risks: understanding the 2021 winter blackout in Texas. Energy Res Soc Sci. 2021;77. https://doi.org/10.1016/j.erss.2021.102106.

  4. Shahid S. Vulnerability of the power sector of Bangladesh to climate change and extreme weather events. Reg Environ Change. 2012;12(3):595–606. https://doi.org/10.1007/s10113-011-0276-z.

    Article  Google Scholar 

  5. Kwasinski A, Andrade F, Castro-Sitiriche MJ, O’Neill-Carrillo E. Hurricane Maria effects on Puerto Rico electric power infrastructure. IEEE Power Energy Technol Syst J. 2019;6(1):85–94. https://doi.org/10.1109/JPETS.2019.2900293.

    Article  Google Scholar 

  6. Do V, McBrien H, Flores NM, Northrop AJ, Schlegelmilch J, Kiang MV, Casey JA. Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA. Nat Commun. 2023;14(1):2470. https://doi.org/10.1038/s41467-023-38084-6.

    Article  Google Scholar 

  7. Stone BJ, Gronlund CJ, Mallen E, Hondula D, O’Neill MS, Rajput M, Grijalva S, Lanza K, Harlan S, Larsen L, Augenbroe G, Krayenhoff ES, Broadbent A, Georgescu M. How blackouts during heat waves amplify mortality and morbidity risk. Environ Sci Technol. 2023. https://doi.org/10.1021/acs.est.2c09588.

    Article  Google Scholar 

  8. International Energy Agency. World Energy Outlook 2022. International Energy Agency: Technical report; 2022.

    Book  Google Scholar 

  9. Meinshausen M, Lewis J, McGlade C, Gütschow J, Nicholls Z, Burdon R, Cozzi L, Hackmann B. Realization of Paris Agreement pledges may limit warming just below 2 \(^\circ\)C. Nature. 2022;604(7905):304–9. https://doi.org/10.1038/s41586-022-04553-z.

    Article  Google Scholar 

  10. Auffhammer M, Baylis P, Hausman CH. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc Natl Acad Sci. 2017;114(8):1886–91. https://doi.org/10.1073/pnas.1613193114.

    Article  Google Scholar 

  11. Romitti Y, Sue Wing I. Heterogeneous climate change impacts on electricity demand in world cities circa mid-century. Sci Rep. 2022;12(1):4280. https://doi.org/10.1038/s41598-022-07922-w.

    Article  Google Scholar 

  12. Amonkar YV, Doss-Gollin J, Farnham DJ, Lall U, Modi V. Differential effects of climate change on average and peak demand for heating and cooling across the contiguous United States. Earth ArXiv. 2023. https://doi.org/10.31223/X5TH5X.

  13. Plaga LS, Bertsch V. Methods for assessing climate uncertainty in energy system models-a systematic literature review. Appl Energy. 2023;331. https://doi.org/10.1016/j.apenergy.2022.120384.

  14. Jung C, Schindler D. A review of recent studies on wind resource projections under climate change. Renew Sust Energ Rev. 2022;165: 112596. https://doi.org/10.1016/j.rser.2022.112596.

    Article  Google Scholar 

  15. Koliou M, van de Lindt JW, McAllister TP, Ellingwood BR, Dillard M, Cutler H. State of the research in community resilience: progress and challenges. Sustain Resilient Infr. 2020;5(3):131–51. https://doi.org/10.1080/23789689.2017.1418547.

    Article  Google Scholar 

  16. Yalew SG, van Vliet MTH, Gernaat DEHJ, Ludwig F, Miara A, Park C, Byers E, De Cian E, Piontek F, Iyer G, Mouratiadou I, Glynn J, Hejazi M, Dessens O, Rochedo P, Pietzcker R, Schaeffer R, Fujimori S, Dasgupta S, Mima S, da Silva SRS, Chaturvedi V, Vautard R, van Vuuren DP. Impacts of climate change on energy systems in global and regional scenarios. Nat Energy. 2020;5(10):794–802. https://doi.org/10.1038/s41560-020-0664-z.

    Article  Google Scholar 

  17. Schaeffer R, Szklo AS, Pereira de Lucena AF, Moreira Cesar Borba BS, Pupo Nogueira LP, Fleming FP, Troccoli A, Harrison M, Boulahya MS. Energy sector vulnerability to climate change: a review. Energy 2012;38(1)1–12. https://doi.org/10.1016/j.energy.2011.11.056.

  18. Clarke L, Wei Y-M, Navarro ADLV, Garg A, Hahmann AN, Khennas S, Azevedo IML, Löschel A, Singh AK, Steg L, Strbac G, Wada K. Energy systems. In: Shukla PR, Skea J, Slade R, Khourdajie AA, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J (eds) Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA (2022). Chap. 6. https://doi.org/10.1017/9781009157926.008.

  19. Maia-Silva D, Kumar R, Nateghi R. The critical role of humidity in modeling summer electricity demand across the United States. Nat Commun. 2020;11(1):1686. https://doi.org/10.1038/s41467-020-15393-8.

    Article  Google Scholar 

  20. Henley A, Peirson J. Non-linearities in electricity demand and temperature: parametric versus non-parametric methods. Oxf Bull Econ Stat. 1997;59(1):149–62. https://doi.org/10.1111/1468-0084.00054.

    Article  Google Scholar 

  21. Moral-Carcedo J, Vicéns-Otero J. Modelling the non-linear response of Spanish electricity demand to temperature variations. Energy Econ. 2005;27(3):477–94. https://doi.org/10.1016/j.eneco.2005.01.003.

    Article  Google Scholar 

  22. Lee J, Dessler AE. The impact of neglecting climate change and variability on ERCOT’s forecasts of electricity demand in Texas. Weather Clim Soc. 2022;14(2):499–505. https://doi.org/10.1175/WCAS-D-21-0140.1. (Chap. Weather, Climate, and Society).

    Article  Google Scholar 

  23. Shaffer, B., Quintero, D., Rhodes, J.: Changing sensitivity to cold weather in Texas power demand. iScience. 2022;25(4), 104173. https://doi.org/10.1016/j.isci.2022.104173

  24. Alipour P, Mukherjee S, Nateghi R. Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: a study applied to the Texas region. Energy. 2019;185:1143–53. https://doi.org/10.1016/j.energy.2019.07.074.

    Article  Google Scholar 

  25. Bett PE, Thornton HE. The climatological relationships between wind and solar energy supply in Britain. Renew Energy. 2016;87:96–110. https://doi.org/10.1016/j.renene.2015.10.006.

    Article  Google Scholar 

  26. Craig MT, Jaramillo P, Hodge B-M, Nijssen B, Brancucci C. Compounding climate change impacts during high stress periods for a high wind and solar power system in Texas. Environ Res Lett. 2020;15(2): 024002. https://doi.org/10.1088/1748-9326/ab6615.

    Article  Google Scholar 

  27. Jerez S, Tobin I, Vautard R, Montávez JP, López-Romero JM, Thais F, Bartok B, Christensen OB, Colette A, Déqué M, Nikulin G, Kotlarski S, van Meijgaard E, Teichmann C, Wild M. The impact of climate change on photovoltaic power generation in Europe. Nat Commun. 2015;6(1):10014. https://doi.org/10.1038/ncomms10014.

    Article  Google Scholar 

  28. Lundquist JK, DuVivier KK, Kaffine D, Tomaszewski JM. Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. Nat Energy. 2019;4(1):26–34. https://doi.org/10.1038/s41560-018-0281-2.

    Article  Google Scholar 

  29. van Vliet MTH, van Beek LPH, Eisner S, Flörke M, Wada Y, Bierkens MFP. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob Environ Change. 2016;40:156–70. https://doi.org/10.1016/j.gloenvcha.2016.07.007.

    Article  Google Scholar 

  30. van Vliet MTH, Yearsley JR, Ludwig F, Vögele S, Lettenmaier DP, Kabat P. Vulnerability of US and European electricity supply to climate change. Nature Climate Change. 2012;2(9):676–81. https://doi.org/10.1038/nclimate1546.

    Article  Google Scholar 

  31. Kern JD, Su Y, Hill J. A retrospective study of the 2012–2016 California drought and its impacts on the power sector. Environ Res Lett. 2020;15(9): 094008. https://doi.org/10.1088/1748-9326/ab9db1.

    Article  Google Scholar 

  32. Su Y, Kern JD, Denaro S, Hill J, Reed P, Sun Y, Cohen J, Characklis GW. An open source model for quantifying risks in bulk electric power systems from spatially and temporally correlated hydrometeorological processes. Environ Modell Softw. 2020;126: 104667. https://doi.org/10.1016/j.envsoft.2020.104667.

    Article  Google Scholar 

  33. Loew A, Jaramillo P, Zhai H, Ali R, Nijssen B, Cheng Y, Klima K. Fossil fuel-fired power plant operations under a changing climate. Clim Change. 2020;163(1):619–32. https://doi.org/10.1007/s10584-020-02834-y.

    Article  Google Scholar 

  34. Coffel ED, Mankin JS. Thermal power generation is disadvantaged in a warming world. Environ Res Lett. 2020. https://doi.org/10.1088/1748-9326/abd4a8.

    Article  Google Scholar 

  35. Liu L, Hejazi M, Li H, Forman B, Zhang X. Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations. Nat Energy. 2017;2(8):1–5. https://doi.org/10.1038/nenergy.2017.109.

    Article  Google Scholar 

  36. Otero N, Martius O, Allen S, Bloomfield H, Schaefli B. Characterizing renewable energy compound events across Europe using a logistic regression-based approach. Meteorol Appl. 2022; 29(5). https://doi.org/10.1002/met.2089

  37. Li B, Basu S, Watson SJ, Russchenberg HWJ. A brief climatology of dunkelflaute events over and surrounding the North and Baltic Sea areas. Energies. 2021;14(20). https://doi.org/10.3390/en14206508.

  38. Boston A, Bongers GD, Bongers N. Characterisation and mitigation of renewable droughts in the Australian National Electricity Market. Environ Res Commun. 2022;4(3): 031001. https://doi.org/10.1088/2515-7620/ac5677.

    Article  Google Scholar 

  39. Ohba M, Kanno Y, Bando S. Effects of meteorological and climatological factors on extremely high residual load and possible future changes. Renew Sustain Energy Rev. 2023;175: 113188. https://doi.org/10.1016/j.rser.2023.113188.

    Article  Google Scholar 

  40. Brown PT, Farnham DJ, Caldeira K. Meteorology and climatology of historical weekly wind and solar power resource droughts over western North America in ERA5. SN Appl Sci. 2021;3(10):814. https://doi.org/10.1007/s42452-021-04794-z.

    Article  Google Scholar 

  41. Ghil M, Lucarini V. The physics of climate variability and climate change. Rev Modern Phys. 2020;92(3): 035002. https://doi.org/10.1103/revmodphys.92.035002.

    Article  MathSciNet  Google Scholar 

  42. Doss-Gollin J, Farnham DJ, Steinschneider S, Lall U. Robust adaptation to multiscale climate variability. Earths Future. 2019;7(7):734–47. https://doi.org/10.1029/2019ef001154.

    Article  Google Scholar 

  43. Ely CR, Brayshaw DJ, Methven J, Cox J, Pearce O. Implications of the North Atlantic Oscillation for a UK-Norway Renewable power system. Energy Policy. 2013;62:1420–7. https://doi.org/10.1016/j.enpol.2013.06.037.

    Article  Google Scholar 

  44. Jerez S, Trigo RM. Time-scale and extent at which large-scale circulation modes determine the wind and solar potential in the Iberian Peninsula. Environ Res Lett. 2013;8(4): 044035. https://doi.org/10.1088/1748-9326/8/4/044035.

    Article  Google Scholar 

  45. Neubacher C, Witthaut D, Wohland J. Multi-decadal offshore wind power variability can be mitigated through optimized European allocation. Adv Geosci. 2021;54:205–15. https://doi.org/10.5194/adgeo-54-205-2021.

    Article  Google Scholar 

  46. Bartos M, Chester M, Johnson N, Gorman B, Eisenberg D, Linkov I, Bates M. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environ Res Lett. 2016;11(11): 114008. https://doi.org/10.1088/1748-9326/11/11/114008.

    Article  Google Scholar 

  47. Feng X, Yang J, Luo C, Sun Y, Liu M, Tang Y. A risk evaluation method for cascading failure considering transmission line icing. In: 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). 2015; p 1–4. https://doi.org/10.1109/ISGT-Asia.2015.7387014.

  48. Yaji K, Homma H, Sakata G, Watanabe M. Evaluation on flashover voltage property of snow accreted insulators for overhead transmission lines, part I - field observations and laboratory tests to evaluate snow accretion properties. IEEE Trans Dielectr Electr Insul. 2014;21(6):2549–58. https://doi.org/10.1109/TDEI.2014.004564.

    Article  Google Scholar 

  49. Croce P, Formichi P, Landi F, Mercogliano P, Bucchignani E, Dosio A, Dimova S. The snow load in Europe and the climate change. Clim Risk Manag. 2018;20:138–54. https://doi.org/10.1016/j.crm.2018.03.001.

    Article  Google Scholar 

  50. Dian S, Cheng P, Ye Q, Wu J, Luo R, Wang C, Hui D, Zhou N, Zou D, Yu Q, Gong X. Integrating wildfires propagation prediction into early warning of electrical transmission line outages. IEEE Access. 2019;7:27586–603. https://doi.org/10.1109/ACCESS.2019.2894141.

    Article  Google Scholar 

  51. Ranasinghe R, Ruane AC, Vautard R, Arnell N, Coppola E, Cruz FA, Dessai S, Islam AS, Rahimi M, Ruiz Carrascal D, Sillmann J, Sylla MB, Tebaldi C, Wang W, Zaaboul R. Climate change information for regional impact and for risk assessment. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press,(2021). Chap. 12. https://doi.org/10.1017/9781009157896.014.

  52. Committee on enhancing the resilience of the nation’s electric power transmission and distribution system, Board on Energy and Environmental Systems, Division on Engineering and Physical Sciences, National Academies of Sciences, Engineering, and Medicine: Enhancing the Resilience of the Nation’s Electricity System, p. 24836. Washington, D.C: National Academies Press, 2017.https://doi.org/10.17226/24836

  53. Seneviratne SI, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano SM, Wehner M, Zhou B. Weather and climate extreme events in a changing climate. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2021. Chap. 11. https://doi.org/10.1017/9781009157896.013.

  54. Knutson T, Camargo SJ, Chan JCL, Emanuel K, Ho C-H, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K, Wu L. Tropical cyclones and climate change assessment: part II: projected response to anthropogenic warming. Bull Am Meteorol Soc. 2020;101(3):303–22. https://doi.org/10.1175/BAMS-D-18-0194.1. (Chap. Bulletin of the American Meteorological Society).

    Article  Google Scholar 

  55. Sobel AH, Wing AA, Camargo SJ, Patricola CM, Vecchi GA, Lee C-Y, Tippett MK. Tropical cyclone frequency. Earths. Future. 2021;9(12):2021–002275. https://doi.org/10.1029/2021EF002275.

    Article  Google Scholar 

  56. Kopp RE, DeConto RM, Bader DA, Hay CC, Horton RM, Kulp S, Oppenheimer M, Pollard D, Strauss BH. Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earths Fut. 2017;5(12):1217–33. https://doi.org/10.1002/2017ef000663.

    Article  Google Scholar 

  57. Gori A, Lin N, Xi D, Emanuel K. Tropical cyclone climatology change greatly exacerbates US extreme rainfall-surge hazard. Nat Clim Change. 2022;12(2):171–8. https://doi.org/10.1038/s41558-021-01272-7.

    Article  Google Scholar 

  58. Flannigan M, Cantin AS, de Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manag. 2013;294:54–61. https://doi.org/10.1016/j.foreco.2012.10.022.

    Article  Google Scholar 

  59. Lee J-Y, Marotzke J, Bala G, Cao L, Corti S, Dunne JP, Engelbrecht F, Fischer E, Fyfe JC, Jones C, Maycock A, Mutemi J, Ndiaye O, Panickal S, Zhou T. Future global climate: scenario-based projections and near-term information. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2021. Chap. 4. https://doi.org/10.1017/9781009157896.006.

  60. Santer BD, Po-Chedley S, Zelinka MD, Cvijanovic I, Bonfils C, Durack PJ, Fu Q, Kiehl J, Mears C, Painter J, Pallotta G, Solomon S, Wentz FJ, Zou C-Z. Human influence on the seasonal cycle of tropospheric temperature. Science. 2018;361(6399). https://doi.org/10.1126/science.aas8806.

  61. Donohoe A, Battisti DS. The seasonal cycle of atmospheric heating and temperature. J Clim. 2013;26(14):4962–80. https://doi.org/10.1175/JCLI-D-12-00713.1. (Chap. Journal of Climate).

    Article  Google Scholar 

  62. Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI, Hwang YT, Li C, O’Gorman PA, Rivière G, Simpson IR, Voigt A. Storm track processes and the opposing influences of climate change. Nat Geosci. 2016;9(9):656–64. https://doi.org/10.1038/ngeo2783.

    Article  Google Scholar 

  63. Nabizadeh E, Hassanzadeh P, Yang D, Barnes EA. Size of the atmospheric blocking events: scaling law and response to climate change. Geophys Res Lett. 2019;46(22):13488–99. https://doi.org/10.1029/2019gl084863.

    Article  Google Scholar 

  64. Gulev SK, Thorne PW, Ahn J, Dentener FJ, Domingues CM, Gerland S, Gong D, Kaufman DS, Nnamchi HC, Quaas J, Rivera JA, Sathyendranath S, Smith SL, Trewin B, von Schuckmann K, Vose RS. Changing state of the climate system. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S.L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi, O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2021;Chap. 2. https://doi.org/10.1017/9781009157896.004.

  65. Petoukhov V, Petri S, Rahmstorf S, Coumou D, Kornhuber K, Schellnhuber HJ. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc Nat Acad Sci Unit Am. 2016;113(25):6862–7. https://doi.org/10.1073/pnas.1606300113.

    Article  Google Scholar 

  66. Kornhuber K, Osprey S, Coumou D, Petri S, Petoukhov V, Rahmstorf S, Gray L. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ Res Lett. 2019;14(5): 054002. https://doi.org/10.1088/1748-9326/ab13bf.

    Article  Google Scholar 

  67. Trenberth KE, Fasullo JT. Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res Atmos. 2012;117:D17. https://doi.org/10.1029/2012jd018020.

    Article  Google Scholar 

  68. Pfleiderer P, Schleussner C-F, Kornhuber K, Coumou D. Summer weather becomes more persistent in a 2 \(^\circ\)C world. Nat Clim Change. 2019;1–6. https://doi.org/10.1038/s41558-019-0555-0.

  69. Miller NL, Hayhoe K, Jin J, Auffhammer M. Climate, extreme heat, and electricity demand in California. J Appl Meteorol Climatol. 2008;47(6):1834–44. https://doi.org/10.1175/2007JAMC1480.1. (Chap. Journal of Applied Meteorology and Climatology).

    Article  Google Scholar 

  70. Cohen J, Zhang X, Francis J, Jung T, Kwok R, Overland J, Ballinger TJ, Bhatt US, Chen HW, Coumou D, Feldstein S, Gu H, Handorf D, Henderson G, Ionita M, Kretschmer M, Laliberte F, Lee S, Linderholm HW, Maslowski W, Peings Y, Pfeiffer K, Rigor I, Semmler T, Stroeve J, Taylor PC, Vavrus S, Vihma T, Wang S, Wendisch M, Wu Y, Yoon J. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat Clim Change. 2020;10(1):20–9. https://doi.org/10.1038/s41558-019-0662-y.

    Article  Google Scholar 

  71. Tobin I, Greuell W, Jerez S, Ludwig F, Vautard R, van Vliet MTH, Bréon F-M. Vulnerabilities and resilience of European power generation to 1.5 \(^\circ\)C, 2 \(^\circ\)C and 3 \(^\circ\)C warming. Environ Res Lett. 2018;13(4),044024. https://doi.org/10.1088/1748-9326/aab211.

  72. Bonanno R, Viterbo F, Maurizio RG. Climate change impacts on wind power generation for the Italian peninsula. Reg Environ Change. 2023;23(1). https://doi.org/10.1007/s10113-022-02007-w.

  73. Hahmann AN, García-Santiago O, Peña A. Current and future wind energy resources in the North Sea according to CMIP6. Wind Energy Sci. 2022;7(6):2373–91. https://doi.org/10.5194/wes-7-2373-2022.

    Article  Google Scholar 

  74. Wohland J. Process-based climate change assessment for European winds using EURO-CORDEX and global models. Environ Res Lett. 2022;17(12). https://doi.org/10.1088/1748-9326/aca77f.

  75. Gonzalez PLM, Brayshaw DJ, Zappa G. The contribution of North Atlantic atmospheric circulation shifts to future wind speed projections for wind power over Europe. Clim Dyn. 2019;53(7–8):4095–113. https://doi.org/10.1007/s00382-019-04776-3.

    Article  Google Scholar 

  76. Wasti A, Ray P, Wi S, Folch C, Ubierna M, Karki P. Climate change and the hydropower sector: a global review. WIREs Clim Change. 2022;13(2):757. https://doi.org/10.1002/wcc.757.

    Article  Google Scholar 

  77. Dodman D, Hayward B, Pelling M, Castan Broto V, Chow W, Chu E, Dawson R, Khirfan L, McPhearson T, Prakash A, Zheng Y, Ziervogel G. Cities, settlements and key infrastructure. In: Pörtner HO, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds) Climate change 2022: impacts, adaptation and vulnerability. Contribution ofWorking Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022;Chap. 6. https://doi.org/10.1017/9781009325844.008.

  78. Carvajal PE, Li FGN, Soria R, Cronin J, Anandarajah G, Mulugetta Y. Large hydropower, decarbonisation and climate change uncertainty: modelling power sector pathways for Ecuador. Energy Strat Rev. 2019;23:86–99. https://doi.org/10.1016/j.esr.2018.12.008.

    Article  Google Scholar 

  79. Dittes B, Špačková O, Schoppa L, Straub D. Managing uncertainty in flood protection planning with climate projections. Hydrol Earth Syst Sci. 2018;22(4):2511–26. https://doi.org/10.5194/hess-22-2511-2018.

    Article  Google Scholar 

  80. Lafferty DC, Sriver RL. Downscaling and bias-correction contribute considerable uncertainty to local climate projections in CMIP6. Preprints. 2023. https://doi.org/10.22541/essoar.168286894.44910061/v1.

  81. Perera ATD, Nik VM, Chen D, Scartezzini J-L, Hong T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat Energy. 2020;5(2):150–9. https://doi.org/10.1038/s41560-020-0558-0.

    Article  Google Scholar 

  82. DeAngelo J, Azevedo I, Bistline J, Clarke L, Luderer G, Byers E, Davis SJ. Energy systems in scenarios at net-zero CO2 emissions. Nat Commun. 2021;12(1):6096. https://doi.org/10.1038/s41467-021-26356-y.

    Article  Google Scholar 

  83. Kondi-Akara G, Hingray B, Francois B, Diedhiou A. Recent trends in urban electricity consumption for cooling in West and Central African countries. Energy. 2023;276: 127597. https://doi.org/10.1016/j.energy.2023.127597.

    Article  Google Scholar 

  84. Waite M, Modi V. Electricity load implications of space heating decarbonization pathways. Joule. 2020;4(2):376–94. https://doi.org/10.1016/j.joule.2019.11.011.

    Article  Google Scholar 

  85. Hausfather Z, Peters GP. Emissions-the ‘business as usual’ story is misleading. Nature. 2020;577(7792):618–20. https://doi.org/10.1038/d41586-020-00177-3.

    Article  Google Scholar 

  86. Walker WE, Lempert RJ, Kwakkel JH. Deep uncertainty. In: Gass SI, Fu MC (eds) Encyclopedia of operations research and management science. p 395–402. Boston, MA: Springer US, 2013. https://doi.org/10.1007/978-1-4419-1153-7_1140.

  87. Mathy S, Criqui P, Knoop K, Fischedick M, Samadi S. Uncertainty management and the dynamic adjustment of deep decarbonization pathways. Clim Policy. 2016;16(sup1):47–62. https://doi.org/10.1080/14693062.2016.1179618.

    Article  Google Scholar 

  88. Sepulveda NA, Jenkins JD, Edington A, Mallapragada DS, Lester RK. The design space for long-duration energy storage in decarbonized power systems. Nat Energy. 2021;6(5):506–16. https://doi.org/10.1038/s41560-021-00796-8.

    Article  Google Scholar 

  89. Larson E, Greig C, Jenkins J, Mayfield E, Pascale A, Zhang C, Drossman J, Williams R, Pacala S, Socolow R, Baik E, Birdsey R, Duke R, Jones R, Haley B, Leslie E, Paustian K, Swan A. Net-zero America: potential pathways, infrastructure, and impacts. Technical report. Princeton: Princeton University; 2021.

    Google Scholar 

  90. Denholm P, Brown P, Cole W, Mai T, Sergi B. Examining supply-side options to achieve 100% clean electricity by 2035. Technical Report NREL/TP-6A40-81644. Golden: National Renewable Energy Laboratory, 2022. https://doi.org/10.2172/1885591

  91. Walter L, Jantarasami L, Schneider C. Pathways to net-zero emissions. Decarb America: Technical report; 2021.

    Google Scholar 

  92. Shaner MR, Davis SJ, Lewis NS, Caldeira K. Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ Sci. 2018;11(4):914–25. https://doi.org/10.1039/C7EE03029K.

    Article  Google Scholar 

  93. Tong D, Farnham DJ, Duan L, Zhang Q, Lewis NS, Caldeira K, Davis SJ. Geophysical constraints on the reliability of solar and wind power worldwide. Nat Communications. 2021;12(1):6146. https://doi.org/10.1038/s41467-021-26355-z.

    Article  Google Scholar 

  94. The Nature Conservancy. Power of place: national. The Nature Conservancy: Technical report; 2023.

    Google Scholar 

  95. Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB, Wagener T. Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Modell Softw. 2016;79:214–32. https://doi.org/10/f8n6zw

  96. Srikrishnan V, Lafferty DC, Wong TE, Lamontagne JR, Quinn JD, Sharma S, Molla NJ, Herman JD, Sriver RL, Morris JF, Lee BS. Uncertainty analysis in multi-sector systems: considerations for risk analysis, projection, and planning for complex systems. Earths Fut. 2022;10(8):2021–002644. https://doi.org/10.1029/2021EF002644.

    Article  Google Scholar 

  97. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S. Global sensitivity analysis: the primer. John Wiley & Sons, Ltd, 2008.

  98. Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz J-C, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J. Dreary state of precipitation in global models. J Geophys Res Atmosp. 2010;115(D24):24211. https://doi.org/10.1029/2010jd014532.

    Article  Google Scholar 

  99. Muller CJ, O’Gorman PA, Back LE. Intensification of precipitation extremes with warming in a cloud-resolving model. J Clim. 2011;24(11):2784–800. https://doi.org/10.1175/2011jcli3876.1.

    Article  Google Scholar 

  100. Espinoza V, Waliser DE, Guan B, Lavers DA, Ralph FM. Global analysis of climate change projection effects on atmospheric rivers. Geophys Res Lett. 2018;47(3):514. https://doi.org/10.1029/2017gl076968.

    Article  Google Scholar 

  101. Smith DM, Scaife AA, Eade R, Athanasiadis P, Bellucci A, Bethke I, Bilbao R, Borchert LF, Caron L-P, Counillon F, Danabasoglu G, Delworth T, Doblas-Reyes FJ, Dunstone NJ, Estella-Perez V, Flavoni S, Hermanson L, Keenlyside N, Kharin V, Kimoto M, Merryfield WJ, Mignot J, Mochizuki T, Modali K, Monerie P-A, Müller WA, Nicolí D, Ortega P, Pankatz K, Pohlmann H, Robson J, Ruggieri P, Sospedra-Alfonso R, Swingedouw D, Wang Y, Wild S, Yeager S, Yang X, Zhang L. North Atlantic climate far more predictable than models imply. Nature. 2020;583(7818):796–800. https://doi.org/10.1038/s41586-020-2525-0.

    Article  Google Scholar 

  102. Kravtsov S. Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century. Geophys Res Lett. 2017;44(11):5749–57. https://doi.org/10.1002/2017GL074016.

    Article  Google Scholar 

  103. Greene AM, Robertson AW. Interannual and low-frequency variability of Upper Indus Basin winter/spring precipitation in observations and CMIP5 models. Clim Dynam. 2017;49(11–12):4171–88. https://doi.org/10.1007/s00382-017-3571-7.

    Article  Google Scholar 

  104. Feng J, Lian T, Ying J, Li J, Li G. Do CMIP5 models show El Niño diversity? J Clim. 2019. https://doi.org/10.1175/jcli-d-18-0854.1.

    Article  Google Scholar 

  105. Srikrishnan V, Guan Y, Tol RSJ, Keller K. Probabilistic projections of baseline twenty-first century CO2 emissions using a simple calibrated integrated assessment model. Climatic Change. 2022;170(3):37. https://doi.org/10.1007/s10584-021-03279-7.

    Article  Google Scholar 

  106. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ. Stationarity is dead: whither water management? Science. 2008;319(5863):573–4. https://doi.org/10.1126/science.1151915.

    Article  Google Scholar 

  107. Doss-Gollin J, Keller K. A subjective Bayesian framework for synthesizing deep uncertainties in climate risk management. Earths Fut. 2023; 11(1). https://doi.org/10.1029/2022EF003044.

  108. Jain S, Lall U. Floods in a changing climate: does the past represent the future? Water Resour Res. 2001;37(12):3193–205. https://doi.org/10.1029/2001wr000495.

    Article  Google Scholar 

  109. Dowling JA, Rinaldi KZ, Ruggles TH, Davis SJ, Yuan M, Tong F, Lewis NS, Caldeira K. Role of long-duration energy storage in variable renewable electricity systems. Joule. 2020;4(9):1907–28. https://doi.org/10.1016/j.joule.2020.07.007.

    Article  Google Scholar 

  110. Collins S, Deane P, Ó Gallachóir B, Pfenninger S, Staffell I. Impacts of inter-annual wind and solar variations on the European power system. Joule. 2018; 2(10), 2076–2090. https://doi.org/10.1016/j.joule.2018.06.020.

  111. Lanzante JR, Dixon KW, Nath MJ, Whitlock CE, Adams-Smith D. Some pitfalls in statistical downscaling of future climate. Bull Am Meteorol Soc. 2018;99(4):791–803. https://doi.org/10.1175/bams-d-17-0046.1.

    Article  Google Scholar 

  112. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J. Should we apply bias correction to global and regional climate model data? Hydrol Earth Syst Sci. 2012;16(9):3391–404. https://doi.org/10.5194/hess-16-3391-2012.

    Article  Google Scholar 

  113. Harder P, Yang Q, Ramesh V, Hernandez-Garcia A, Watson CD, Szwarcman D, Rolnick D. Generating physically-consistent high-resolution climate data with hard-constrained neural networks. In: AAAI 2022 Fall Symposium: The Role of AI in Responding To Climate Challenges. 2022, p 7.

  114. Price I, Rasp S. Increasing the accuracy and resolution of precipitation forecasts using deep generative models. arXiv. 2022. https://doi.org/10.48550/arXiv.2203.12297.

  115. Lall U, Sharma A. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research. 1996;32(3):679–93. https://doi.org/10.1029/95WR02966.

    Article  Google Scholar 

  116. Rajagopalan B, Lall U. A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resour Res. 1999;35(10):3089–101. https://doi.org/10.1029/1999WR900028.

    Article  Google Scholar 

  117. Amonkar Y, Farnham DJ, Lall U. A k-nearest neighbor space-time simulator with applications to large-scale wind and solar power modeling. Patterns. 2022;3(3): 100454. https://doi.org/10.1016/j.patter.2022.100454.

    Article  Google Scholar 

  118. Papalexiou SM, Serinaldi F, Clark MP. Large-domain multisite precipitation generation: operational blueprint and demonstration for 1,000 sites. Water Resour Res. 2023;59(3):2022–034094. https://doi.org/10.1029/2022WR034094.

    Article  Google Scholar 

  119. Steinschneider S, Brown C. A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments. Water Resour Res. 2013;49(11):7205–20. https://doi.org/10.1002/wrcr.20528.

    Article  Google Scholar 

  120. Gupta RS, Steinschneider S, Reed PM. Understanding contributions of Paleo-informed natural variability and climate changes on hydroclimate extremes in the Central Valley region of California. Preprint, Preprints, 2023. https://doi.org/10.22541/essoar.167870424.46495295/v1.

  121. Bracken C, Rajagopalan B, Zagona E. A hidden Markov model combined with climate indices for multidecadal streamflow simulation. Water Resour Res. 2014;50(10):7836–46. https://doi.org/10.1002/2014WR015567.

    Article  Google Scholar 

  122. ...Merz B, Aerts JCJH, Arnbjerg-Nielsen K, Baldi M, Becker A, Bichet A, Blöschl G, Bouwer LM, Brauer A, Cioffi F, Delgado JM, Gocht M, Guzzetti F, Harrigan S, Hirschboeck K, Kilsby C, Kron W, Kwon HH, Lall U, Merz R, Nissen K, Salvatti P, Swierczynski T, Ulbrich U, Viglione A, Ward PJ, Weiler M, Wilhelm B, Nied M. Floods and climate: emerging perspectives for flood risk assessment and management. Nat Hazards Earth Syst Sci. 2014;14(7):1921–42. https://doi.org/10/gb9nzm

  123. Lamontagne JR, Reed PM, Link R, Calvin KV, Clarke LE, Edmonds JA. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earths Fut. 2018;6(3):488–504. https://doi.org/10.1002/2017ef000701.

    Article  Google Scholar 

  124. Dolan F, Lamontagne J, Link R, Hejazi M, Reed P, Edmonds J. Evaluating the economic impact of water scarcity in a changing world. Nat Commun. 2021;12(1):1915.

    Article  Google Scholar 

  125. Zarekarizi M, Srikrishnan V, Keller K. Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks. Nat Commun. 2020;11(1):5361. https://doi.org/10.1038/s41467-020-19188-9.

    Article  Google Scholar 

  126. Zeighami A, Kern J, Yates AJ, Weber P, Bruno AAUS. West Coast droughts and heat waves exacerbate pollution inequality and can evade emission control policies. Nat Commun. 2023;14:1415. https://doi.org/10.1038/s41467-023-37080-0.

    Article  Google Scholar 

  127. Chowdhury AFMK, Dang TD, Nguyen HTT, Koh R, Galelli S. The Greater Mekong’s Climate-Water-Energy Nexus: How ENSO-Triggered Regional Droughts Affect Power Supply and CO2 Emissions. Earths Fut. 2021;9(3):2020–001814. https://doi.org/10.1029/2020EF001814.

    Article  Google Scholar 

  128. Gómez C, Sanchez-Silva M, Dueñas-Osorio L, Rosowsky D. Hierarchical infrastructure network representation methods for risk-based decision-making. Structure and Infrastructure Engineering. 2013;9(3):260–74. https://doi.org/10.1080/15732479.2010.546415.

    Article  Google Scholar 

  129. Zhou X, Duenas-Osorio L, Doss-Gollin J, Liu L, Stadler L, Li Q. Mesoscale modeling of distributed water systems enables policy search. Water Resour Res. 2023;59(5). https://doi.org/10.1029/2022WR033758.

  130. Kazadi AN, Doss-Gollin J, Sebastian A, Silva A. Flood prediction with graph neural networks. In: Climate Change AI. Climate Change AI, 2022.

  131. da Silva AL, Kocayusufoglu F, Jafarpour S, Bullo F, Swami A, Singh A. Combining physics and machine learning for network flow estimation. In: International Conference on Learning Representations, 2020.

  132. Wong TE, Bakker AMR, Ruckert K, Applegate P, Slangen ABA, Keller K. BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections. Geosci Model Dev. 2017;10(7),2741–2760. https://doi.org/10.5194/gmd-10-2741-2017.

  133. Keller K, Helgeson C, Srikrishnan V. Climate risk management. Ann Rev Earth Planetary Sci. 2021;49(1):95–116. https://doi.org/10.1146/annurev-earth-080320-055847.

    Article  Google Scholar 

  134. Bankes S. Exploratory modeling for policy analysis. Oper Res. 1993;41(3):435–49. https://doi.org/10/c7rgcr.

  135. Brown CM, Ghile Y, Laverty M, Li K. Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour Res. 2012;48(9). https://doi.org/10/gc3d7d.

  136. Steinschneider S, McCrary R, Wi S, Mulligan K, Mearns LO, Brown CM. Expanded decision-scaling framework to select robust long-term water-system plans under hydroclimatic uncertainties. J Water Resour Plann Manag. 2015;141(11). https://doi.org/10.1061/(asce)wr.1943-5452.0000536.

  137. Taner MÜ, Ray P, Brown C. Incorporating multidimensional probabilistic information into robustness-based water systems planning. Water Resour Res. 2019;55(5):3659–79. https://doi.org/10.1029/2018WR022909.

    Article  Google Scholar 

  138. Lempert RJ. Robust Decision Making (RDM). In: Marchau VAWJ, Walker WE, Bloemen PJTM, Popper SW (eds) Decision making under deep uncertainty: from theory to practice. Cham: Springer International Publishing, (2019), p 23–51. https://doi.org/10.1007/978-3-030-05252-2_2.

  139. Kasprzyk JR, Nataraj S, Reed PM, Lempert RJ. Many objective robust decision making for complex environmental systems undergoing change. Environ Model Softw. 2013;42:55–71. https://doi.org/10.1016/j.envsoft.2012.12.007.

    Article  Google Scholar 

  140. Gupta SK, Rosenhead J. Robustness in sequential investment decisions. Manag Sci. 1968;15(2):18–229. https://doi.org/10.1287/mnsc.15.2.b18. arXiv:abs/2628850

  141. de Neufville R, Smet K. Engineering Options Analysis (EOA). In: Marchau VAWJ, Walker WE, Bloemen PJTM, Popper SW, editors. Decision making under deep uncertainty: from theory to practice. Cham: Springer International Publishing; 2019. p. 117–32. https://doi.org/10.1007/978-3-030-05252-2_6.

  142. Erfani T, Pachos K, Harou JJ. Real-options water supply planning: multistage scenario trees for adaptive and flexible capacity expansion under probabilistic climate change uncertainty. Water Resour Res. 2018;54(7):5069–87. https://doi.org/10.1029/2017wr021803.

    Article  Google Scholar 

  143. Hino M, Hall JW. Real options analysis of adaptation to changing flood risk: structural and nonstructural measures. ASCE-ASME J Risk Uncertain Eng Sys A Civil Eng. 2017;3(3):04017005. https://doi.org/10.1061/ajrua6.0000905.

    Article  Google Scholar 

  144. Quinn JD, Reed PM, Keller K. Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points. Environ Model Softw. 2017;92:125–41. https://doi.org/10.1016/j.envsoft.2017.02.017.

    Article  Google Scholar 

  145. Schmidhuber J. Sequential Decision Making Based on Direct Search. In: Sun R, Giles CL (eds) Sequence learning: paradigms, algorithms, and applications. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2001, p 212–240. https://doi.org/10.1007/3-540-44565-X_10.

  146. Sutton RS, Barto AG. Reinforcement learning: an introduction, Second. edition. Cambridge, Massachusetts and London, England: MIT Press; 2018.

    Google Scholar 

Download references

Acknowledgements

The authors thank Vivek Srikrishnan and David J. Farnham for insightful comments and suggestions on preliminary versions of this manuscript.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JDG designed the study and drafted the manuscript. JDG, YA, KS, and DC contributed to the literature review and manuscript revisions.

Corresponding author

Correspondence to James Doss-Gollin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doss-Gollin, J., Amonkar, Y., Schmeltzer, K. et al. Improving the Representation of Climate Risks in Long-Term Electricity Systems Planning: a Critical Review. Curr Sustainable Renewable Energy Rep 10, 206–217 (2023). https://doi.org/10.1007/s40518-023-00224-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-023-00224-3

Keywords

Navigation