Skip to main content

Advertisement

Log in

Realizing the Transactive Energy Future with Local Energy Market: an Overview

  • Zero-Marginal-Cost Market Design (R Sioshansi and S Mousavian, Section Editors)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A transactive energy (TE) future promises to allow a large number of prosumers to be profit-seeking market participants. One way to realize this future is through the local energy market (LEM), a consumer-centric market platform. We aim to compare possible structures and mechanisms of LEM and systematically investigate the technical challenges faced by LEM implementation.

Recent Findings

We carry out a detailed classification of LEM based on the market participants, physical layer, information and communication layer, and the market mechanism. We identify that research works on LEM are most interested in market participants’ strategic behaviors and innovative market design. Optimization, game theory, and agent-based simulation are the common methods to assist the analysis of LEM.

Summary

Our classification of LEM can clear some confusion from terminology; we identify that LEM’s coordination with existing energy infrastructure remains as future research directions and call for greater synergy from industry and governments to pave the way for the TE future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Khorasany M, Mishra Y, Ledwich G. Market framework for local energy trading: a review of potential designs and market clearing approaches. IET Gener Transm Distrib IET. 2018;12:5899–908.

    Article  Google Scholar 

  2. Kim B-G, Zhang Y, Van Der Schaar M, Lee J-W. Dynamic pricing and energy consumption scheduling with reinforcement learning. IEEE Trans Smart Grid IEEE. 2015;7:2187–98.

    Article  Google Scholar 

  3. Tushar W, Yuen C, Mohsenian-Rad H, Saha T, Poor HV, Wood KL. Transforming energy networks via peer-to-peer energy trading: the potential of game-theoretic approaches. IEEE Signal Process Mag IEEE. 2018;35:90–111.

    Article  Google Scholar 

  4. Melton RB. Gridwise transactive energy framework (draft version). Pacific Northwest National Lab. (PNNL), Richland, WA (United States); 2013.

  5. Yin S, Wang J, Qiu F. Decentralized electricity market with transactive energy–a path forward. Electr J. Elsevier; 2019;32:7–13. A comprehensive roadmap for transactive energy.

  6. Luo G, He Y, Zhao C, Zhang X, Lin S, Zhao Y. Coordinated wholesale and retail market mechanism for providing demand-side flexibility. 2019 IEEE sustain power energy conf ISPEC. IEEE; 2019. p. 2569–74.

  7. Sousa T, Soares T, Pinson P, Moret F, Baroche T, Sorin E. Peer-to-peer and community-based markets: a comprehensive review. Renew Sustain Energy Rev Elsevier. 2019;104:367–78.

    Article  Google Scholar 

  8. Tushar W, Saha TK, Yuen C, Smith D, Poor HV. Peer-to-peer trading in electricity networks: an overview. IEEE Trans Smart Grid. IEEE; 2020;11:3185–200. A detailed introduction to the P2P market.

  9. Strbac G, Papadaskalopoulos D, Chrysanthopoulos N, Estanqueiro A, Algarvio H, Lopes F, et al. Decarbonization of electricity systems in europe: market design challenges. IEEE Power Energy Mag IEEE. 2021;19:53–63.

    Article  Google Scholar 

  10. Han L, Morstyn T, McCulloch M. Incentivizing prosumer coalitions with energy management using cooperative game theory. IEEE Trans Power Syst IEEE. 2018;34:303–13.

    Article  Google Scholar 

  11. . Mengelkamp E, Staudt P, Garttner J, Weinhardt C. Trading on local energy markets: a comparison of market designs and bidding strategies. 2017 14th int conf Eur energy mark EEM. IEEE; 2017. p. 1–6.

  12. Correa-Florez CA, Michiorri A, Kariniotakis G. Optimal participation of residential aggregators in energy and local flexibility markets. IEEE Trans Smart Grid IEEE. 2019;11:1644–56.

    Article  Google Scholar 

  13. Rahimi FA, Ipakchi A. Transactive energy techniques: closing the gap between wholesale and retail markets. Electr J Elsevier. 2012;25:29–35.

    Article  Google Scholar 

  14. Chen T, Su W. Indirect customer-to-customer energy trading with reinforcement learning. IEEE Trans Smart Grid IEEE. 2018;10:4338–48.

    Article  Google Scholar 

  15. Paudel A, Chaudhari K, Long C, Gooi HB. Peer-to-peer energy trading in a prosumer-based community microgrid: a game-theoretic model. IEEE Trans Ind Electron IEEE. 2018;66:6087–97.

    Article  Google Scholar 

  16. Crespo-Vazquez JL, AlSkaif T, Gonzalez-Rueda AM, Gibescu M. A community-based energy market design using decentralized decision-making under uncertainty. IEEE Trans Smart Grid. 2021;12:1782–93.

    Article  Google Scholar 

  17. Zarabie AK, Das S, Faqiry MN. Fairness-regularized DLMP-based bilevel transactive energy mechanism in distribution systems. IEEE Trans Smart Grid IEEE. 2019;10:6029–40.

    Article  Google Scholar 

  18. Bahramara S, Sheikhahmadi P, Mazza A, Chicco G, Shafie-Khah M, Catalão JP. A risk-based decision framework for the distribution company in mutual interaction with the wholesale day-ahead market and microgrids. IEEE Trans Ind Inform IEEE. 2019;16:764–78.

    Article  Google Scholar 

  19. Du Y, Li F. A hierarchical real-time balancing market considering multi-microgrids with distributed sustainable resources. IEEE Trans Sustain Energy IEEE. 2018;11:72–83.

    Article  Google Scholar 

  20. Wu X, Wang X, Zhang W, Huang Y. LEM for DERs and flexible loads. IET Gener Transm Distrib IET. 2019;13:3556–63.

    Article  Google Scholar 

  21. Morstyn T, Teytelboym A, McCulloch MD. Bilateral contract networks for peer-to-peer energy trading. IEEE Trans Smart Grid IEEE. 2018;10:2026–35.

    Article  Google Scholar 

  22. Bai L, Wang J, Wang C, Chen C, Li F. Distribution locational marginal pricing (DLMP) for congestion management and voltage support. IEEE Trans Power Syst IEEE. 2017;33:4061–73.

    Article  Google Scholar 

  23. Renani YK, Ehsan M, Shahidehpour M. Optimal transactive market operations with distribution system operators. IEEE Trans Smart Grid IEEE. 2017;9:6692–701.

    Article  Google Scholar 

  24. Morstyn T, Teytelboym A, Hepburn C, McCulloch MD. Integrating p2p energy trading with probabilistic distribution locational marginal pricing. IEEE Trans Smart Grid IEEE. 2019;11:3095–106.

    Article  Google Scholar 

  25. Li J, Zhang C, Xu Z, Wang J, Zhao J, Zhang YA. Distributed transactive energy trading framework in distribution networks. IEEE Trans Power Syst. 2018;33:7215–27.

    Article  Google Scholar 

  26. Lee J, Guo J, Choi JK, Zukerman M. Distributed energy trading in microgrids: a game-theoretic model and its equilibrium analysis. IEEE Trans Ind Electron. 2015;62:3524–33.

    Article  Google Scholar 

  27. Wang H, Huang T, Liao X, Abu-Rub H, Chen G. Reinforcement learning in energy trading game among smart microgrids. IEEE Trans Ind Electron IEEE. 2016;63:5109–19.

    Google Scholar 

  28. Zhang C, Wang Q, Wang J, Pinson P, Østergaard J. Real-time trading strategies of proactive DISCO with heterogeneous DG owners. IEEE Trans Smart Grid IEEE. 2016;9:1688–97.

    Google Scholar 

  29. Wang L, Zhu Z, Jiang C, Li Z. Bi-level robust optimization for distribution system with multiple microgrids considering uncertainty distribution locational marginal price. IEEE Trans Smart Grid. IEEE; 2020;

  30. Xu H, Sun H, Nikovski D, Kitamura S, Mori K, Hashimoto H. Deep reinforcement learning for joint bidding and pricing of load serving entity. IEEE Trans Smart Grid IEEE. 2019;10:6366–75.

    Article  Google Scholar 

  31. Xiao L, Xiao X, Dai C, Pengy M, Wang L, Poor HV. Reinforcement learning-based energy trading for microgrids. ArXiv Prepr ArXiv180106285. 2018;

  32. Sorin E, Bobo L, Pinson P. Consensus-based approach to peer-to-peer electricity markets with product differentiation. IEEE Trans Power Syst IEEE. 2018;34:994–1004.

    Article  Google Scholar 

  33. Gregoratti D, Matamoros J. Distributed energy trading: the multiple-microgrid case. IEEE Trans Ind Electron IEEE. 2014;62:2551–9.

    Article  Google Scholar 

  34. Kim J, Dvorkin Y. A P2P-dominant distribution system architecture. IEEE Trans Power Syst IEEE. 2019;35:2716–25.

    Article  Google Scholar 

  35. Guerrero J, Chapman AC, Verbič G. Decentralized P2P energy trading under network constraints in a low-voltage network. IEEE Trans Smart Grid IEEE. 2018;10:5163–73.

    Article  Google Scholar 

  36. Liu T, Tan X, Sun B, Wu Y, Guan X, Tsang DH. Energy management of cooperative microgrids with p2p energy sharing in distribution networks. 2015 IEEE int conf smart grid commun SmartGridComm. IEEE; 2015. p. 410–5.

  37. Morstyn T, McCulloch MD. Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences. IEEE Trans Power Syst. 2019;34:4005–14.

    Article  Google Scholar 

  38. Zhou Y, Wu J, Long C. Evaluation of peer-to-peer energy sharing mechanisms based on a multi-agent simulation framework. Appl Energy Elsevier. 2018;222:993–1022.

    Article  Google Scholar 

  39. Park L, Jeong S, Kim J, Cho S. Joint geometric unsupervised learning and truthful auction for local energy market. IEEE Trans Ind Electron. 2019;66:1499–508.

    Article  Google Scholar 

  40. Xiao X, Dai C, Li Y, Zhou C, Xiao L. Energy trading game for microgrids using reinforcement learning. Int Conf Game Theory Netw. Springer; 2017. p. 131–40.

  41. Tushar W, Yuen C, Saha TK, Morstyn T, Chapman AC, Alam MJE, et al. Peer-to-peer energy systems for connected communities: a review of recent advances and emerging challenges. Appl Energy. Elsevier; 2021;282:116131. Comprehensive introduction of LEM projects around the world.

  42. Zhou Y, Wu J, Long C, Ming W. State-of-the-art analysis and perspectives for peer-to-peer energy trading. Engineering. Elsevier; 2020;6:739–53. Investigation on the regulatory policy and social perspective of LEM.

  43. Moret F, Pinson P. Energy collectives: a community and fairness based approach to future electricity markets. IEEE Trans Power Syst IEEE. 2018;34:3994–4004.

    Article  Google Scholar 

  44. Long C, Wu J, Zhang C, Cheng M, Al-Wakeel A. Feasibility of peer-to-peer energy trading in low voltage electrical distribution networks. Energy Procedia Elsevier. 2017;105:2227–32.

    Article  Google Scholar 

  45. Khorasany M, Mishra Y, Ledwich G. Hybrid trading scheme for peer-to-peer energy trading in transactive energy markets. IET Gener Transm Distrib. Wiley Online Library; 2020;14:245–53.

  46. Mediwaththe CP, Shaw M, Halgamuge S, Smith DB, Scott P. An incentive-compatible energy trading framework for neighborhood area networks with shared energy storage. IEEE Trans Sustain Energy. 2020;11:467–76.

    Article  Google Scholar 

  47. Doan HT, Cho J, Kim D. Peer-to-peer energy trading in smart grid through blockchain: a double auction-based game theoretic approach. IEEE Access. 2021;9:49206–18.

    Article  Google Scholar 

  48. Zhang C, Wu J, Long C, Cheng M. Review of existing peer-to-peer energy trading projects. Energy Procedia Elsevier. 2017;105:2563–8.

    Article  Google Scholar 

  49. Mengelkamp E, Gärttner J, Rock K, Kessler S, Orsini L, Weinhardt C. Designing microgrid energy markets: a case study: the Brooklyn microgrid. Appl Energy Elsevier. 2018;210:870–80.

    Article  Google Scholar 

  50. Cazalet EG. Automated transactive energy (TeMIX). Grid-Interop Forum. 2011.

  51. Lezama F, Soares J, Hernandez-Leal P, Kaisers M, Pinto T, Vale Z. Local energy markets: paving the path toward fully transactive energy systems. IEEE Trans Power Syst IEEE. 2018;34:4081–8.

    Article  Google Scholar 

  52. Perez-DeLaMora D, Quiroz-Ibarra JE, Fernandez-Anaya G, Hernandez-Martinez E. Roadmap on community-based microgrids deployment: an extensive review. Energy Rep Elsevier. 2021;7:2883–98.

    Google Scholar 

  53. Cao J, Yang M. Energy internet–towards smart grid 2.0. 2013 fourth int conf netw distrib comput. IEEE; 2013. p. 105–10.

  54. Feng C. How blockchain can be used for creating a market for energy savings certificates [PhD Thesis]. Duke University; 2019.

  55. Wilkinson S, Hojckova K, Eon C, Morrison GM, Sandén B. Is peer-to-peer electricity trading empowering users? Evidence on motivations and roles in a prosumer business model trial in Australia. Energy Res Soc Sci. Elsevier; 2020;66:101500.

  56. Morstyn T, Farrell N, Darby SJ, McCulloch MD. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants. Nat Energy Nature Publishing Group. 2018;3:94–101.

    Article  Google Scholar 

  57. Zhaohong B, Yanling L. An overview of rural electrification in China: history, technology, and emerging trends. IEEE Electrification Mag IEEE. 2015;3:36–47.

    Article  Google Scholar 

  58. Shrestha A, Bishwokarma R, Chapagain A, Banjara S, Aryal S, Mali B, et al. Peer-to-peer energy trading in micro/mini-grids for local energy communities: a review and case study of Nepal. IEEE Access IEEE. 2019;7:131911–28.

    Article  Google Scholar 

  59. Khan I. Drivers, enablers, and barriers to prosumerism in Bangladesh: a sustainable solution to energy poverty? Energy Res Soc Sci Elsevier. 2019;55:82–92.

    Article  Google Scholar 

  60. Haider R, Baros S, Wasa Y, Romvary J, Uchida K, Annaswamy AM. Toward a retail market for distribution grids. IEEE Trans Smart Grid IEEE. 2020;11:4891–905.

    Article  Google Scholar 

  61. Wolak FA. Market design in an intermittent renewable future: cost recovery with zero-marginal-cost resources. IEEE Power Energy Mag. 2021;19:29–40.

    Article  Google Scholar 

  62. Mieth R, Dvorkin Y. Distribution electricity pricing under uncertainty. IEEE Trans Power Syst IEEE. 2019;35:2325–38.

    Article  Google Scholar 

  63. Nguyen DT, Le LB. Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Trans Smart Grid IEEE. 2014;5:1608–20.

    Article  Google Scholar 

  64. Wu Y, Tan X, Qian L, Tsang DH, Song W-Z, Yu L. Optimal pricing and energy scheduling for hybrid energy trading market in future smart grid. Ieee Trans Ind Inform IEEE. 2015;11:1585–96.

    Article  Google Scholar 

  65. Botterud A, Thimmapuram P, Yamakado M. Simulating GenCo bidding strategies in electricity markets with an agent-based model. Proc 7th annu IAEE Eur energy conf IAEE-05 August 28–30 2005. Citeseer; 2005.

  66. Mousavi SM, Barforoushi T. Strategic wind power investment in competitive electricity markets considering the possibility of participation in intraday market. IET Gener Transm Distrib IET. 2020;14:2676–86.

    Article  Google Scholar 

  67. Wu X, Li H, Wang X, Zhao W. Cooperative operation for wind turbines and hydrogen fueling stations with on-site hydrogen production. IEEE Trans Sustain Energy IEEE. 2020;11:2775–89.

    Article  Google Scholar 

  68. Krause T, Andersson G, Ernst D, Vdovina-Beck E, Cherkaoui R, Germond A. Nash equilibria and reinforcement learning for active decision maker modelling in power markets. Proc 6th IAEE Eur Conf Model Energy Econ Policy. 2004.

  69. Sueyoshi T, Tadiparthi GR. An agent-based decision support system for wholesale electricity market. Decis Support Syst Elsevier. 2008;44:425–46.

    Article  Google Scholar 

  70. Pinto T, Faia R, Ghazvini MAF, Soares J, Corchado JM, Vale Z. Decision support for small players negotiations under a transactive energy framework. IEEE Trans Power Syst IEEE. 2018;34:4015–23.

    Article  Google Scholar 

  71. Nunna HSVSK, Srinivasan D. Multiagent-based transactive energy framework for distribution systems with smart microgrids. IEEE Trans Ind Inform. 2017;13:2241–50.

  72. Ye Y, Qiu D, Wu X, Strbac G, Ward J. Model-free real-time autonomous control for a residential multi-energy system using deep reinforcement learning. IEEE Trans Smart Grid. 2020;11:3068–82.

    Article  Google Scholar 

  73. Ye Y, Qiu D, Sun M, Papadaskalopoulos D, Strbac G. Deep reinforcement learning for strategic bidding in electricity markets. IEEE Trans Smart Grid IEEE. 2019;11:1343–55.

    Article  Google Scholar 

  74. He S, Liu N, Chen B, Li R. Optimal operation of integrated heat-power energy market: a Cournot game approach. 2020 IEEE Power Energy Soc Gen Meet PESGM. IEEE; 2020. p. 1–5.

  75. Foruzan E, Soh L-K, Asgarpoor S. Reinforcement learning approach for optimal distributed energy management in a microgrid. IEEE Trans Power Syst IEEE. 2018;33:5749–58.

    Article  Google Scholar 

  76. Yin S, Wang J, Li Z, Fang X. State-of-the-art short-term electricity market operation with solar generation: a review. Renew Sustain Energy Rev. Elsevier; 2021;138:110647.

  77. Zhang Y, Wang J, Li Z. Uncertainty modeling of distributed energy resources: techniques and challenges. Curr Sustain Energy Rep Springer. 2019;6:42–51.

    Google Scholar 

  78. Yang J, Zhao J, Qiu J, Wen F. A Distribution market clearing mechanism for renewable generation units with zero marginal costs. IEEE Trans Ind Inform. 2019;15:4775–87.

    Article  Google Scholar 

  79. Ryu S, Bae S, Lee J-U, Kim H. Gaussian residual bidding based coalition for two-settlement renewable energy market. IEEE Access IEEE. 2018;6:43029–38.

    Article  Google Scholar 

  80. Zhang Z, Li R, Li F. A novel peer-to-peer local electricity market for joint trading of energy and uncertainty. IEEE Trans Smart Grid IEEE. 2019;11:1205–15.

    Article  Google Scholar 

  81. Hou J, Zhang Z, Lin Z, Yang L, Liu X, Jiang Y, et al. An energy imbalance settlement mechanism considering decision-making strategy of retailers under renewable portfolio standard. IEEE Access. 2019;7:118146–61.

    Article  Google Scholar 

  82. Ghorani R, Fotuhi-Firuzabad M, Moeini-Aghtaie M. Optimal bidding strategy of transactive agents in local energy markets. IEEE Trans Smart Grid IEEE. 2018;10:5152–62.

    Article  Google Scholar 

  83. Zhang K, Troitzsch S, Hanif S, Hamacher T. Coordinated market design for peer-to-peer energy trade and ancillary services in distribution grids. IEEE Trans Smart Grid IEEE. 2020;11:2929–41.

    Article  Google Scholar 

  84. Zhong W, Xie S, Xie K, Yang Q, Xie L. Cooperative P2P energy trading in active distribution networks: an MILP-based Nash bargaining solution. IEEE Trans Smart Grid. IEEE; 2020;

  85. Nikolaidis AI, Charalambous CA, Mancarella P. A graph-based loss allocation framework for transactive energy markets in unbalanced radial distribution networks. IEEE Trans Power Syst IEEE. 2018;34:4109–18.

    Article  Google Scholar 

  86. Moura R, Brito MC. Prosumer aggregation policies, country experience and business models. Energy Policy. 2019;132:820–30.

    Article  Google Scholar 

  87. Mengelkamp E, Notheisen B, Beer C, Dauer D, Weinhardt C. A blockchain-based smart grid: towards sustainable local energy markets. Comput Sci-Res Dev Springer. 2018;33:207–14.

    Article  Google Scholar 

  88. Denegre N. A study of regulatory and policy instruments in global energy markets associated with energy trading and prosumer concepts/by Nicholas Denegre [Ph.D. thesis]. Karl-Franzens-Universität Graz;

  89. de Almeida L, Klausmann N, van Soest H, Cappelli V. Peer-to-peer trading and energy community in the electricity market-analysing the literature on law and regulation and looking ahead to future challenges. Robert Schuman Cent Adv Stud Res Pap No RSCAS. 2021;35.

  90. Schwabeneder D, Dallinger B, Moisl F. Existing and future PV prosumer concepts.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Lin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Zero-Marginal-Cost Market Design

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wang, J. Realizing the Transactive Energy Future with Local Energy Market: an Overview. Curr Sustainable Renewable Energy Rep 9, 1–14 (2022). https://doi.org/10.1007/s40518-021-00198-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-021-00198-0

Keywords

Navigation