Recent Advancements in Torrefaction of Solid Biomass

Abstract

Purpose of Review

The study focuses on the recent advancements on the torrefaction of solid biomass feedstock. A literature review has been conducted and the most important findings of selected studies which have been published the last 5 years are presented.

Recent Findings

According to the published research, solid biomass torrefaction gains significant interest with more than 500 studies since 2002. Based on the existing literature, a focus on the torrefaction woody biomass is observed. However, investigation of torrefaction of herbaceous and other types of biomass such as aquatic is increasing. The integration of pelletization with torrefaction is also widely investigated. Finally, significant effort is given for the development, scaling up, and introduction to market of various torrefaction technologies.

Summary

Future research should address the improvement and commercialization of existing torrefaction technologies. Integrated torrefaction and pelletization shall be further investigated especially using non-woody biomass feedstock.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Batitzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC. Biomass torrefaction technology: techno-economic status and future prospects. Energy. 2013;62:196–214. https://doi.org/10.1016/j.energy.2013.09.035.

    Article  Google Scholar 

  2. 2.

    Christoforou EA, Fokaides PA. Life cycle assessment (LCA) of olive husk torrefaction. Renew Energy. 2016;90:257–66. https://doi.org/10.1016/j.renene.2016.01.022.

    Article  Google Scholar 

  3. 3.

    Klemm M, Schmersahl R, Kirsten C, Biofuels WN. Upgraded new solids. In: Kaltschmitt M, Themelis NJ, Bronicki LY, Söder L, Vega LA, editors. Renewable energy systems. New York: Springer reference; 2013. p. 138–59.

    Google Scholar 

  4. 4.

    Rousset P, Fernandes K, Vale A, Macedo L, Benoist A. Change in particle size distribution of torrefied biomass during cold fluidization. Energy. 2013;51:71–7. https://doi.org/10.1016/j.energy.2013.01.030.

    Article  Google Scholar 

  5. 5.

    Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy. 2006;31:3458–70. https://doi.org/10.1016/j.energy.2006.03.008.

    Article  Google Scholar 

  6. 6.

    Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Marechal F. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy. 2014;70:58–67. https://doi.org/10.1016/j.energy.2014.03.086.

    Article  Google Scholar 

  7. 7.

    Bergman PCA. Combined torrefaction and pelletisation—the TOP process. Report ECN-C-05-073, ECN: The Netherlands; 2005. http://www.ecn.nl/docs/library/report/2005/c05073.pdf. Accessed 10 Mar 2018.

  8. 8.

    Thrän D, Witt J, Schaubach K, Kiel J, Carbo M, Maier J, et al. Moving torrefaction towards market introduction—technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy. 2016;89:184–200. https://doi.org/10.1016/j.biombioe.2016.03.004.

    Article  Google Scholar 

  9. 9.

    Correia R, Gonçalves M, Nobre C, Mendes B. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresour Technol. 2017;223:210–8. https://doi.org/10.1016/j.biortech.2016.10.046.

    Article  Google Scholar 

  10. 10.

    Joshi Y, de Vries H, Woudstra T, de Jong W. Torrefaction: unit operation modelling and process simulation. Appl Therm Eng. 2015;74:83–8. https://doi.org/10.1016/j.applthermaleng.2013.12.059.

    Article  Google Scholar 

  11. 11.

    Doassans-Carrère N, Muller S, Mitzkat M. REVE—a new industrial technology for biomass torrefaction: pilot studies. Fuel Process Technology. 2014;126:155–62. https://doi.org/10.1016/j.fuproc.2014.04.026.

    Article  Google Scholar 

  12. 12.

    Stelte W, Nielsen NPK, Hansen HO, Dahl J, Leib S, Sanadi AR. Reprint of: pelletizing properties of torrefied wheat straw. Biomass Bioenergy. 2013;53:105–12. https://doi.org/10.1016/j.biombioe.2013.03.012.

    Article  Google Scholar 

  13. 13.

    Pimchuai A, Dutta A, Basu P. Torrefaction of agricultural residue to enhance combustible properties. Energy Fuel J. 2010;24(9):4638–45. https://doi.org/10.1021/ef901168f.

    Article  Google Scholar 

  14. 14.

    Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuels. 2008;87:844–56. https://doi.org/10.1016/j.fuel.2007.05.041.

    Article  Google Scholar 

  15. 15.

    Sadaka S, Negi S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy. 2009;28(3):427–34. https://doi.org/10.1002/ep.10392.

    Article  Google Scholar 

  16. 16.

    Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62. https://doi.org/10.1016/j.biombioe.2011.06.023.

    Google Scholar 

  17. 17.

    Chew JJ, Doshi V. Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sust Energ Rev. 2011;15:4212–22. https://doi.org/10.1016/j.rser.2011.09.017.

    Article  Google Scholar 

  18. 18.

    • Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew SustainEnergy Rev. 2015;44:847–66. https://doi.org/10.1016/j.rser.2014.12.039. The study focuses on the pelletisation of torrefied biomass and reviews available technical solutions.

    Article  Google Scholar 

  19. 19.

    Keipi T, Tolvanen H, Kokko L, Raiko R. The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy. 2014;66:232–9. https://doi.org/10.1016/j.biombioe.2014.02.015.

    Article  Google Scholar 

  20. 20.

    Wróbel M, Hamerska J, Jewiarz M, Mudryk K, Marzena Niemczyk M. Influence of parameters of the torrefaction process on the selected parameters of torrefied woody biomass. In: Mudryk K, Werle S, editors. Renewable energy sources: engineering, technology, innovation. Springer: Springer Proceedings in Energy; 2018. https://doi.org/10.1007/978-3-319-72371-6_68.

    Google Scholar 

  21. 21.

    • Rodrigues A, Loureiro L, Nunes LJR. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: properties of torrefied products. Biomass Bioenergy. 2018;107:55–65. https://doi.org/10.1016/j.biombioe.2017.11.005. A comprehensive study for woody biomass torrefaction where 17 different types of woody biomass were processed.

    Article  Google Scholar 

  22. 22.

    Li S-X, Zou J-Y, Li M-F, Wu X-F, Bian J, Xue Z-M. Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction. Energy. 2017;124:321–9. https://doi.org/10.1016/j.energy.2017.02.079.

    Article  Google Scholar 

  23. 23.

    Juan F, Pérez JF, Pelaez-Samaniego MR, Garcia-Perez M. Torrefaction of fast-growing Colombian wood species. Waste Biomass Valorisation. 2017; https://doi.org/10.1007/s12649-017-0164-y.

  24. 24.

    Ohliger A, Förster M, Kneer R. Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel. 2013;104:607–13. https://doi.org/10.1016/j.fuel.2012.06.112.

    Article  Google Scholar 

  25. 25.

    Yan W, Perez S, Sheng K. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization. Fuel. 2017;196:473–80. https://doi.org/10.1016/j.fuel.2017.02.015.

    Article  Google Scholar 

  26. 26.

    Gogoi D, Bordoloi N, Goswami R, Narzari R, Saikia R, Sut D, et al. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: an agro-processing wastes. Bioresour Technol. 2017;242:36–44. https://doi.org/10.1016/j.biortech.2017.03.169.

    Article  Google Scholar 

  27. 27.

    Li M-F, Li X, Bian J, Chen C-Z, Yu Y-T, Sun R-C. Effect of temperature and holding time on bamboo torrefaction. Biomass Bioenergy. 2015;83:366–72. https://doi.org/10.1016/j.biombioe.2015.10.016.

    Article  Google Scholar 

  28. 28.

    Yue Y, Singh H, Singh B, Mani S. Torrefaction of sorghum biomass to improve fuel properties. Bioresour Technol. 2017;232:372–9. https://doi.org/10.1016/j.biortech.2017.02.060.

    Article  Google Scholar 

  29. 29.

    Kihedu J. Torrefaction and combustion of ligno-cellulosic biomass. Energy Procedia. 2015;75:162–7. https://doi.org/10.1016/jegypro201507.273.

    Article  Google Scholar 

  30. 30.

    Toscano G, Pizzi A, Pedretti E, Rossini G, Ciceri G, et al. Torrefaction of tomato industry residues. Fuels. 2015;143:89–97. https://doi.org/10.1016/j.fuel.2014.11.039.

    Article  Google Scholar 

  31. 31.

    Benavente V, Fullana A. Torrefaction of olive mill waste. Biomass Bioenergy. 2015;73:186–94. https://doi.org/10.1016/j.biombioe.2014.12.020.

    Article  Google Scholar 

  32. 32.

    • Li S-X, Chen C-Z, Li M-F, Xiao X. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresource Technol. 2018;249:348–53. https://doi.org/10.1016/j.biortech.2017.10.026. Carbon dioxide is used as the medium during torrefaction process.

    Article  Google Scholar 

  33. 33.

    Sellappah V, Uemura Y, Hassan S, Sulaiman MH, Lam MK. Torrefaction of empty fruit bunch in the presence of combustion gas. Procedia Eng. 2016;148:750–7. https://doi.org/10.1016/j.proeng.2016.06.608.

    Article  Google Scholar 

  34. 34.

    Uemura Y, Omar W, Othman NA, Yusup S, Tsutsui T. Torrefaction of oil palm EFB in the presence of oxygen. Fuel. 2013;103:156–60. https://doi.org/10.1016/j.fuel.2011.11.018.

    Article  Google Scholar 

  35. 35.

    Rousset P, Macedo L, Commandré JM, Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis. 2012;96:86–91. https://doi.org/10.1016/j.jaap.2012.03.009.

    Article  Google Scholar 

  36. 36.

    Chen W-H, Lu K-M, Lee W-J, Liu S-H, Lin T-C. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl Energy. 2014;114:104–13. https://doi.org/10.1016/j.apenergy.2013.09.045.

    Article  Google Scholar 

  37. 37.

    Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol. 2012;123:98–105. https://doi.org/10.1016/j.biortech.2012.07.096.

    Article  Google Scholar 

  38. 38.

    Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013;127:318–25. https://doi.org/10.1016/j.biortech.2012.09.092.

    Article  Google Scholar 

  39. 39.

    Nunes LJR, Matias JCO, Catalão JPS. Mixed biomass pellets for thermal energy production: a review of combustion models. Appl Energy. 2014;127:135–40. https://doi.org/10.1016/j.apenergy.2014.04.042.

    Article  Google Scholar 

  40. 40.

    Cao L, Yuan X, Li H, Li C, Xiao Z, Jiang L, et al. Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets. Bioresour Technol. 2015;185:254–62. https://doi.org/10.1016/j.biortech.2015.02.045.

    Article  Google Scholar 

  41. 41.

    Araújo S, Boas MAV, Neiva DM, Carneiro AC, Vital B, Breguez M, et al. Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures. Biomass Bioenergy. 2016;90:181–6. https://doi.org/10.1016/j.biombioe.2016.04.007.

    Article  Google Scholar 

  42. 42.

    Pirraglia A, Gonzalez R, Saloni D, Denig J. Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US. Energy Convers Manag. 2013;66:153–64. https://doi.org/10.1016/j.enconman.2012.09.024.

    Article  Google Scholar 

  43. 43.

    Mobini M, Meyer J, Trippe F, Sowlati T, Fröhling M, Schultmann F. Assessing the integration of torrefaction into wood pellet production. J Clean Prod. 2014;78:216–25. https://doi.org/10.1016/j.jclepro.2014.04.071.

    Article  Google Scholar 

  44. 44.

    Li Y, Tittmann P, Parker N, Jenkins B. Economic impact of combined torrefaction and pelletization processes on forestry biomass supply. GCB Bioenergy. 2017;9:681–93. https://doi.org/10.1111/gcbb.12375.

    Article  Google Scholar 

  45. 45.

    Xu F, Linnebur K, Wang D. Torrefaction of conservation reserve program biomass: a techno-economic evaluation. Ind Crop Prod. 2014;61:382–7. https://doi.org/10.1016/j.indcrop.2014.07.030.

    Article  Google Scholar 

  46. 46.

    Bazargan A, Rough SL, McKay G. Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy. 2014;70:489–97. https://doi.org/10.1016/j.biombioe.2014.08.015.

    Article  Google Scholar 

  47. 47.

    Peng J, Bi XT, Lim CJ, Peng H, Kim CS, Jia D, et al. Sawdust as an effective binder for making torrefied pellets. Appl Energy. 2015;157:491–8. https://doi.org/10.1016/j.apenergy.2015.06.024.

    Article  Google Scholar 

  48. 48.

    Hu Q, Shao J, Yang H, Yao D, Wang X, Chen H. Effects of binders on the properties of bio-char pellets. Appl Energy. 2015;157:508–16. https://doi.org/10.1016/j.apenergy.2015.05.019.

    Article  Google Scholar 

  49. 49.

    Bai X, Wang G, Gong C, Yu Y, Liu W, Wang D. Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour Technol. 2017;233:373–81. https://doi.org/10.1016/j.biortech.2017.02.091.

    Article  Google Scholar 

  50. 50.

    •• Cremers M, Koppejan J, Middelkamp J, Witkamp J, Sokhansanj S, Melin S, et al. Status overview of torrefaction technologies—a review of the commercialisation status of biomass torrefaction. IEA Bioenergy; 2015. http://www.ieabcc.nl/publications/IEA_Bioenergy_T32_Torrefaction_update_2015b.pdf. Accessed 13 Mar 2018. A comprehensive study which provides significant information regarding the current status of torrefaction technologies.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elias A. Christoforou.

Ethics declarations

Conflict of Interest

Elias A. Christoforou declares no conflicts of interest.

Paris A. Fokaides is a section editor for Current Sustainable/Renewable Energy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomass and Biofuels

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christoforou, E.A., Fokaides, P.A. Recent Advancements in Torrefaction of Solid Biomass. Curr Sustainable Renewable Energy Rep 5, 163–171 (2018). https://doi.org/10.1007/s40518-018-0110-z

Download citation

Keywords

  • Solid biomass
  • Torrefaction
  • Biofuels