Current Sustainable/Renewable Energy Reports

, Volume 4, Issue 3, pp 90–98 | Cite as

Water for Energy: Systems Integration and Analysis to Address Resource Challenges

  • Ashlynn S. StillwellEmail author
  • Ahmed M. Mroue
  • Joshua D. Rhodes
  • Margaret A. Cook
  • Joshua B. Sperling
  • Tyler Hussey
  • David Burnett
  • Michael E. Webber
Nexus of Food, Water, Energy (R Mohtar, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nexus of Food, Water, Energy


Purpose of Review

Water for the energy sector is an interdisciplinary challenge that requires new integrated systems knowledge, well-documented case studies that test various decision processes, and both quantitative and qualitative modeling and analyses to support sustainable decision-making. This review paper highlights water requirements of the energy sector and summarizes interdisciplinary research opportunities for sustainable and efficient management of water for energy, and new datasets to inform analysis of water policies and programs affecting energy systems.

Recent Findings

The energy sector depends closely on water resources for primary fuels production (including extraction or cultivation, processing, and refining) and electric power generation in thermoelectric and hydroelectric power plants. While research in these areas has advanced significantly in recent years, questions remain regarding water quality and quantity impacts of emerging technologies and policies in the water-energy sectors, potential for use of alternative water resources, impact of energy portfolio transitions, and tools to aid decision-making under uncertainty.


Water is essential for energy production and power generation processes. Projected transitions in energy portfolios and water for energy policy hold the potential to both mitigate or exacerbate water stress, therefore motivating a critical need for systems integration and analysis approaches that can guide the development of cost-effective, resource-efficient, and resilient systems and services.


Energy-water nexus Electric power generation Power plant cooling Oil and gas production Hydraulic fracturing 



This research was supported by the Texas A&M WEF Nexus initiative.

Compliance with Ethical Standards

Conflict of Interest

Ashlynn S. Stillwell, Ahmed M. Mroue, Joshua B. Sperling, Tyler Hussey, David Burnett, and Michael E. Webber declare no conflicts of interest.

Joshua D. Rhodes is an equity partner in IdeaSmiths LLC, which consults on topics in the same areas of interests. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research.

Margaret A. Cook reports her recent employment with Apache Corporation as of May 30, 2017.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Associated Press. Drought could shut down nuclear power plants. January 23, 2008.
  2. 2.
    California Energy Commission. Drought Impacts California’s Energy; Governor Brown’s Response Plan (Executive Order B-29-15).
  3. 3.
    O’Grady E. Drought adds to 2012 Texas power supply worry. October 18, 2011.
  4. 4.
    Walsh B. How climate change and the monsoons affect India’s blackouts. July 31, 2012.
  5. 5.
    Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.
  6. 6.
    Energy Information Administration. Annual Energy Outlook 2016 Early Release: Annotated Summary of Two Cases. U.S. Department of Energy.
  7. 7.
    Medlock KB III. Modeling the implications of expanded US shale gas production. Energy Strat Rev. 2012;1:33–41. doi: 10.1016/j.esr.2011.12.002.CrossRefGoogle Scholar
  8. 8.
    Gleick PH. Water and energy. Annu Rev Energy Environ. 1994;19:267–99. doi: 10.1146/ Scholar
  9. 9.
    King CW, Webber ME. Water intensity of transportation. Environ Sci Technol. 2008;42:7866–72.CrossRefGoogle Scholar
  10. 10.
    Twomey KM, Beal CM, King CW, Webber ME. Biofuels: an energy and water conundrum. World Energy Monitor 2012:3.Google Scholar
  11. 11.
    • Lampert DJ, Cai H, Elgowainy A. Wells to wheels: water consumption for transportation fuels in the United States. Energy Environ Sci 2016:vol:pp. doi: 10.1039/c5ee03254g. This paper reports updated life-cycle water consumption results for a wide range of transportation fuels.
  12. 12.
    Maupin MA. Kenny JF, Hutson SS, Lovelace JK, Barber NL, Linsey KS. Estimated use of water in the United States. U.S. Geological Survey Circular 1405 2014.Google Scholar
  13. 13.
    Solley WB, Pierce RP, Perlman HA. Estimated use of water in the United States in 1995. U.S. Geological Survey Circular 1200 1998.Google Scholar
  14. 14.
    •• Sanders KT. Critical review: uncharted waters? The future of the electricity-water nexus. Environ Sci Technol. 2014;49:51–66. This critical review provides a detailed overview and future directions of water use for electric power generation. CrossRefGoogle Scholar
  15. 15.
    Department of Energy, 2014. Secretary science and energy on the water-energy nexus: challenges and opportunities. Department of Energy Available at
  16. 16.
    van Vliet MTH, Yearsley JR, Ludwig F, Vögele S, Lettenmaier DP, Kabat P. Vulnerability of U.S. and European electricity supply to climate change. Nat Clim Chang. 2012;2(9):676–81.CrossRefGoogle Scholar
  17. 17.
    Bartos MD, Chester MV. Impacts of climate change on electric power supply in the western United States. Nat Clim Chang. 2015;5(1):748–52.CrossRefGoogle Scholar
  18. 18.
    Cook MA, King CW, Todd Davidson F, Webber ME. Assessing the impacts of droughts and heat waves at thermoelectric power plants in the United States using integrated regression, thermodynamics, and climate models. Energy Rep. 2015;1(1):193–203.CrossRefGoogle Scholar
  19. 19.
    Tidwell VC, Bailey M, Zemlick KM, Moreland BD. Water supply as a constraint on transmission expansion planning in the western interconnection. Environ Res Lett. 2016;11:124001. doi: 10.1088/1748-9326/11/12/124001.CrossRefGoogle Scholar
  20. 20.
    • van Vliet MTH, Wiberg D, Leduc S, Riahi K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat Clim Chang. 2016; doi: 10.1038/NCLIMATE2903. This paper examines the climate change impacts on hydroelectric and thermoelectric power plants globally.
  21. 21.
    van Vliet MTH, Sheffield J, Wiberg D, Wood EF. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environ Res Lett. 2016;11:124021. doi: 10.1088/1748-9326/11/12/124021.CrossRefGoogle Scholar
  22. 22.
    Talati S, Zhai H, Kyle GP, Morgan MG, Patel P, Liu L. Consumptive water use from electricity generation in the southwest under alternative climate, technology, and policy futures. Environ Sci Technol. 2016;50:12095–104. doi: 10.1021/acs.est.6b01389.CrossRefGoogle Scholar
  23. 23.
    Bloomfield HC, Brayshaw DJ, Shaffrey LC, Coker PJ, Thornton HE. Quantifying the increasing sensitivity of power systems to climate variability. Environ Res Lett. 2016;11:124025. doi: 10.1088/1748-9326/11/12/124025.CrossRefGoogle Scholar
  24. 24.
    Henry CL, Pratson LF. Effects of environmental temperature change on the efficiency of coal- and natural gas-fired power plants. Environ Sci Technol. 2016;50:9764–72. doi: 10.1021/acs.est.6b01503.CrossRefGoogle Scholar
  25. 25.
    Hanlon, P., Madel, R., Olson-Sawyer, K., Rabin, K., & Rose, J. (2013). Food, water and energy: know the nexus, 32. Retrieved from
  26. 26.
    • Grubert EA. Water consumption from hydroelectricity in the United States. Adv Water Resour. 2016;96(1):88–94. This paper reports net and gross water consumption from hydropower operations. CrossRefGoogle Scholar
  27. 27.
    Sovacool BK, Sovacool KE. Identifying future electricity-water tradeoffs in the United States. Energ Policy. 2009;37(7):2763–73. doi: 10.1016/j.enpol.2009.03.012.CrossRefGoogle Scholar
  28. 28.
    Environmental Protection Agency. Scoping materials for initial design of EPA research study on potential relationships between hydraulic fracturing and drinking water resources. Washington, D.C.: Environmental Protection Agency; 2010. Available at$File/Hydraulic+Frac+Scoping+Doc+for+SAB-3-22-10+Final.pdf Google Scholar
  29. 29.
    Mauter MS, Alvarez PJJ, Burton A, Cafaro DC, Chen W, Gregory KB, et al. Regional variation in water-related impacts of shale gas development and implications for emerging international plays. Environ Sci Technol. 2014;48(15):8298–306.CrossRefGoogle Scholar
  30. 30.
    Grubert EA, Beach FC, Webber ME. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity. Environ Res Lett. 2012;7:045801. doi: 10.1088/1748-9326/7/4/045801.CrossRefGoogle Scholar
  31. 31.
    Scanlon BR, Reedy RC, Nicot JP. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays? Environ Res Lett. 2014;9:124011. doi: 10.1088/1748-9326/9/12/124011.CrossRefGoogle Scholar
  32. 32.
    Nicot JP, Reedy RC, Costley RA, Huang Y. Oil & gas water use in Texas: update to the 2011 mining water use report. Jackson School of Geosciences and The University of Texas at Austin: Bureau of Economic Geology; 2012.Google Scholar
  33. 33.
    Gallegos, T. J., Bern, C. R., Birdwell, J. E., Haines, S. S., & Engle, M. (2015). The role of water in unconventional in situ energy resource extraction technologies. Food, energy, and water: the chemistry connection, edited by Ahuja S., editor, 183–215.Google Scholar
  34. 34.
    •• Scanlon BR, Reedy RC, Nicot JP. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil. Environ Sci Technol. 2014;48:12386–93. doi: 10.1021/es502506v. This paper provides a detailed comparison of water use for production of conventional and unconventional hydrocarbons. CrossRefGoogle Scholar
  35. 35.
    Nicot JP, Scanlon BR. Water use for shale-gas production in Texas, U.S. Environ Sci Technol. 2012;46(6):3580–6.CrossRefGoogle Scholar
  36. 36.
    Weingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL. High-rate injection is associated with increase in U.S. mid-continent seismicity. Science. 2015;348(6241):1336–40.CrossRefGoogle Scholar
  37. 37.
    Choy GL, Rubinstein JL, Yeck WL, McNamara DE, Mueller CS, Boyd OS. A rare moderate-sized (MW 4.9) earthquake in Kansas: rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection. Seismol Res Lett. 2016;87(6):1–9.CrossRefGoogle Scholar
  38. 38.
    Torres L, Yadav OP, Khan E. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Sci Total Environ. 2016;539:478–93.CrossRefGoogle Scholar
  39. 39.
    Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol. 2014;48(15):8334–48.CrossRefGoogle Scholar
  40. 40.
    Chiu Y-W, Walseth B, Suh S. Water embodied in bioethanol in the United States. Environ Sci Technol. 2009;43(8):2688–92. doi: 10.1021/es8031067.CrossRefGoogle Scholar
  41. 41.
    Twomey KM, Stillwell AS, Webber ME. The unintended energy impacts of increased nitrate contamination from biofuels production. J Environ Monit. 2010;12:218–24. doi: 10.1039/b913137j.CrossRefGoogle Scholar
  42. 42.
    National Energy Technology Laboratory. Cost and performance baseline for fossil energy plants Volume 1: bituminous coal and natural gas to electricity. 2013 DOE/NETL-2010/1397.Google Scholar
  43. 43.
    Stillwell AS, King CW, Webber ME, Duncan IJ, Hardberger A. The energy-water nexus in Texas. Ecol Soc. 2011;16:2.CrossRefGoogle Scholar
  44. 44.
    C. Kutscher, Gladden, C. (2006). Wet-dry cooling for power plants, Parabolic Trough Technology Workshop, Incline Village, Nevada, National Renewable Energy Laboratory, 2006.Google Scholar
  45. 45.
    Thermosyphon Cooler Hybrid System for Water Savings in Power Plants, Technology Insights: A Report from EPRI’s Innovation Scouts, 2012.Google Scholar
  46. 46.
    Western Resource Advocates. (2011). Every Drop Counts - Valuing the Water Used to Generate Electricity. Western Resource Advocates.Google Scholar
  47. 47.
    Macknick J, Newmark R, Heath G, Hallett KC. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ Res Lett. 2012;7(4):045802.CrossRefGoogle Scholar
  48. 48.
    DeNooyer TA, Peschel JM, Zhang Z, Stillwell AS. Integrating water resources and power generation: the energy-water nexus in Illinois. Appl Energy. 2016;162(1):363–71.CrossRefGoogle Scholar
  49. 49.
    Peer RAM, Garrison JB, Timms CP, Sanders KT. Spatially and temporally resolved analysis of environmental trade-offs in electricity generation. Environ Sci Technol. 2016;50:4537–45. doi: 10.1021/acs.est.5b05419.CrossRefGoogle Scholar
  50. 50.
    Peer RAM, Sanders KT. Characterizing cooling water source and usage patterns across US thermoelectric power plants: a comparative assessment of self-reported cooling water data. Environ Res Lett. 2016;11:124030. doi: 10.1088/1748-9326/aa51d8.CrossRefGoogle Scholar
  51. 51.
    EPRI. Water & Sustainability (Volume 3): U.S. Water Consumption for Power Production—The Next Half Century. Electric Power Research Institute 2002. Report 1006786.Google Scholar
  52. 52.
    Fthenakis V, Kim HC. Life-cycle uses of water in U.S. electricity generation. Renew Sust Energ Rev. 2010;14(7):2039–48. doi: 10.1016/j.rser.2010.03.008.CrossRefGoogle Scholar
  53. 53.
    Environmental Protection Agency U.S. Department of the Interior, History of the Clean Water Act 2012.
  54. 54.
    Peredo-Alvarez VM, Bellas AS, Trainor-Guitton WJ, Lange I. Mandate a man to fish?: technological advance in cooling systems at U.S. thermal electric plants. Water Resour Res. 2016;52:1418–26. doi: 10.1002/2015WR017676.CrossRefGoogle Scholar
  55. 55.
    Macknick J, Sattler S, Averyt K, Clemmer S, Rogers J. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ Res Lett. 2012;7(4):045803.CrossRefGoogle Scholar
  56. 56.
    Raptis CE, van Vliet MTH, Pfister S. Global thermal pollution of rivers from thermoelectric power plants. Environ Res Lett. 2016;11:104011. doi: 10.1088/1748-9326/11/10/104011.CrossRefGoogle Scholar
  57. 57.
    Raptis CE, Pfister S. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems. Energy. 2016;97:46–57. doi: 10.1016/ Scholar
  58. 58.
    Miara A, Vörösmarty CJ. A dynamic model to assess tradeoffs in power production and riverine ecosystem protection. Environ Sci Processes Impacts. 2013;15:1113–26. doi: 10.1039/c3em00196b.CrossRefGoogle Scholar
  59. 59.
    Madden N, Lewis A, Davis M. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environ Res Lett. 2013;8:035006. doi: 10.1088/1748-9326/8/3/035006.CrossRefGoogle Scholar
  60. 60.
    Williams, E. D. and J. E. Simmons. (2013). Water in the energy industry: an introduction. BP International Ltd.
  61. 61.
    Water Constraints on Energy Production: Altering our Current Collision Course, Synapses Energy Economics Civil Society Institute, 2013.Google Scholar
  62. 62.
    EPA: “Data gaps” block verdict on fracking, drinking water. (2016, December 13). Retrieved January 15, 2017, from
  63. 63.
    Mazdiyasni O, AghaKouchak A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc Natl Acad Sci U S A. 2015;112:11484–9. doi: 10.1073/pnas.1422945112.CrossRefGoogle Scholar
  64. 64.
    Gray D. 25-year agreement allows Denver to reduce Shoshone water right. Post Independent January 9, 2007.
  65. 65.
    Rahm D. Regulating hydraulic fracturing in shale gas plays: the case of Texas. Energ Policy. 2011;39(5):2974–81. doi: 10.1016/j.enpol.2011.03.009.CrossRefGoogle Scholar
  66. 66.
    Ferrell SL, Adams DC, Kizer MA, Engle DM, Ott C. The Oklahoma Water Law Handbook. Oklahoma Cooperative Extension Service E-10106.Google Scholar
  67. 67.
    Loew A, Jaramillo P, Zhai H. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants. Environ Res Lett. 2016;11:104004. doi: 10.1088/1748-9326/11/10/104004.CrossRefGoogle Scholar
  68. 68.
    Stillwell AS, Clayton ME, Webber ME. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges. Environ Res Lett. 2011;6:034015. doi: 10.1088/1748-9326/6/3/034015.CrossRefGoogle Scholar
  69. 69.
    Stillwell AS, Webber ME. Novel methodology for evaluating economic feasibility of low-water cooling technology retrofits at power plants. Water Policy. 2013;15:292–308. doi: 10.2166/wp.2012.018.CrossRefGoogle Scholar
  70. 70.
    Tidwell VC, Macknick J, Zemlick K, Sanchez J, Woldeyesus T. Transitioning to zero freshwater withdrawal in the U.S. for thermoelectric generation. Appl Energy. 2014;131(1):508–16.CrossRefGoogle Scholar
  71. 71.
    Li H, Chien S-H, Hsieh M-K, Dzombak DA, Vidic RD. Escalating water demand for energy production and the potential for use of treated municipal wastewater. Environ Sci Technol. 2011;45(10):4195–200.CrossRefGoogle Scholar
  72. 72.
    Stillwell AS, Webber ME. Geographic, technologic, and economic analysis of using reclaimed water for thermoelectric power plant cooling. Environ Sci Technol. 2014;48(8):4588–95.CrossRefGoogle Scholar
  73. 73.
    Barker ZA, Stillwell AS. Implications of transitioning from de facto to engineered water reuse for power plant cooling. Environ Sci Technol. 2016;50(10):5379–88.CrossRefGoogle Scholar
  74. 74.
    Glazer YR, Kjellsson JB, Sanders KT, Webber ME. Potential for using energy from flared gas for on-site hydraulic fracturing wastewater treatment in Texas. Environ Sci Technol Lett. 2014;1(7):300–4.CrossRefGoogle Scholar
  75. 75.
    Barbot E, Vidic NS, Gregory KB, Vidic RD. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing. Environ Sci Technol. 2013;47(6):2562–9.CrossRefGoogle Scholar
  76. 76.
    Scanlon BR, Reedy RC, Male F, Hove M. Managing the increasing water footprint of hydraulic fracturing in the Bakken Play, United States. Environ Sci Technol. 2016;50:10273–81. doi: 10.1021/acs.est.6b01375.CrossRefGoogle Scholar
  77. 77.
    Tiedeman K, Yeh S, Scanlon BR, Teter J, Shankar MG. Recent trends in water use and production for California oil production. Environ Sci Technol. 2016;50:7904–12. doi: 10.1021/acs.est.6b01240.CrossRefGoogle Scholar
  78. 78.
    Nicot JP, Scanlon BR, Reedy RC, Costley RA. Source and fate of hydraulic fracturing water in the Barnett Shale: a historical perspective. Environ Sci Technol. 2014;48:2464–71. doi: 10.1021/es404050r.CrossRefGoogle Scholar
  79. 79.
    Meng M, Chen M, Sanders KT. Evaluating the feasibility of using produced water from oil and natural gas production to address water scarcity in California’s Central Valley. Sustainability. 2016;8:1318. doi: 10.3390/su8121318.CrossRefGoogle Scholar
  80. 80.
    Proposed Resolution by the California State Lands Commission Regarding Once-through Cooling in California Power Plants, Technical Report, California State Lands Commission, 2006.Google Scholar
  81. 81.
    Chini CM, Schreiber KL, Barker ZA, Stillwell AS. Quantifying energy and water savings in the U.S. residential sector. Environ Sci Technol. 2016;50:9003–12. doi: 10.1021/acs.est.6b01559.CrossRefGoogle Scholar
  82. 82.
    Engström RE, Howells M, Destouni G, Bhatt V, Bazilian M, Rogner HH. Connecting the resource nexus to basic urban service provision—with focus on water-energy interactions in New York City. Sustain Cities Soc. 2017; doi: 10.1016/j.scs.2017.02.007.
  83. 83.
    Stillwell AS, Twomey KM, Osborne R, Greene DM, Pedersen DW, Webber ME. An integrated energy, carbon, water, and economic analysis of reclaimed water use in urban settings: a case study of Austin, Texas. J Water Reuse Desalination. 2011;1(4):208–23. doi: 10.2166/wrd.2011.058.CrossRefGoogle Scholar
  84. 84.
    Chen S, Chen B. Urban energy-water nexus: a network perspective. Appl Energy. 2016;184:905–14. doi: 10.1016/j.apenergy.2016.03.042.CrossRefGoogle Scholar
  85. 85.
    Chini CM, Konar M, Stillwell AS. Direct and indirect urban water footprints of the United States. Water Resour Res. 2017;53:316–27. doi: 10.1002/2016WR0194373.CrossRefGoogle Scholar
  86. 86.
    King, C.; Stillwell, A.; Twomey, K.; Webber, M. (2013). Coherence between water and energy policies. Natural Resources Journal 53(1), 117-[iv].Google Scholar
  87. 87.
    Hussey K, Pittock J. The energy-water nexus: managing the links between energy and water for a sustainable future. Ecol Soc. 2012;17(1) doi: 10.5751/ES-04641-170131.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ashlynn S. Stillwell
    • 1
    Email author
  • Ahmed M. Mroue
    • 2
  • Joshua D. Rhodes
    • 3
  • Margaret A. Cook
    • 3
  • Joshua B. Sperling
    • 4
  • Tyler Hussey
    • 2
  • David Burnett
    • 2
  • Michael E. Webber
    • 3
  1. 1.University of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.Texas A&M UniversityCollege StationUSA
  3. 3.The University of Texas at AustinAustinUSA
  4. 4.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations