Skip to main content
Log in

Multi-Scale Hierarchical Micro/Nano Surface Structures Induced by high Repetition rate femto-second Laser Pulses on Ti6Al4V in Ambient air

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Surface engineered components with micro/nano scale periodic surface structures are having a wide range of industrial applications, owing to their unique tribology enhancing characteristics. Generally, design and development of highly controlled sub micro-scale structures with intricate feature characteristics are highly challenging for the manufacturing industries, especially super alloys like titanium due to its inherent low thermal conductivity and higher chemical reactive property. This forms the major objective of the present research work emphasizing the methodology - hatching technique (dot and line) to create highly controlled micro/nano scale periodic surface structures. The recently widespread femtosecond pulsed laser processing can be an efficient alternative method for the usual industrial practice of generating periodic surface structures. Femtosecond pules hatch pitch was varied from 10 to 50 μm (with 250 pulses per spot), at higher repetition rates and scanning speeds of 200 to 500 kHz and 500 to 2000 mm/s respectively. The periodic surface structures analysed were found to be close to the wavelength (1030 nm) of incident pulsed laser, wherein the micro scale structures (in the range of 6 to 10 μm) were observed to be covered with nano scale structures. Furthermore, generated multiscale surface structures were observed to be having a higher degree of similarity to the Tetrodontophora Bielanensis, a European giant springtail skin structure, which revealed the possibility of achieving the concept of ‘Bio mimicking’ using this approach. Microdots, micro/nano columns, pillars, ripples, and cones are the various types of surface structures reported in the present research work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All the other data required for validation is provided in the manuscript itself. The data that support the findings of this study are available from the corresponding author upon request. The data provided upon request will include dataset captured for surface roughness measurements.

References

  1. Lee, B.E.J., Exir, H., Weck, A., Grandfield, K.: Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants. Appl. Surf. Sci. 441, 1034–1042 (May 2018). doi: https://doi.org/10.1016/j.apsusc.2018.02.119

  2. Hwang, T.Y., Vorobyev, A.Y., Guo, C.: “Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals,” Opt Express, vol. 19, no. S4, p. A824, Jul. doi: (2011). https://doi.org/10.1364/oe.19.00a824

  3. Huerta-Murillo, D., et al.: Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy. Appl. Surf. Sci. 463, 838–846 (Jan. 2019). doi: https://doi.org/10.1016/j.apsusc.2018.09.012

  4. Wang, Q., Samanta, A., Toor, F., Shaw, S., Ding, H.: “Colorizing Ti-6Al-4V surface via high-throughput laser surface nanostructuring,” J Manuf Process, vol. 43, pp. 70–75, Jul. doi: (2019). https://doi.org/10.1016/j.jmapro.2019.03.050

  5. Orazi, L., Sorgato, M., Piccolo, L., Masato, D., Lucchetta, G.: “Generation and Characterization of Laser Induced Periodic Surface Structures on Plastic Injection Molds,” Lasers in Manufacturing and Materials Processing, vol. 7, no. 2, pp. 207–221, Jun. doi: (2020). https://doi.org/10.1007/s40516-020-00115-1

  6. Piccolo, L., Wang, Z., Lucchetta, G., Shen, M., Masato, D.: Ultrafast Laser Texturing of Stainless Steel in Water and Air Environment. Lasers in Manufacturing and Materials Processing. 1–20 (Jul. 2022). doi: https://doi.org/10.1007/s40516-022-00179-1

  7. Jeong, H.E., Lee, S.H., Kim, J.K., Suh, K.Y.: “Nanoengineered multiscale hierarchical structures with tailored wetting properties,” Langmuir, vol. 22, no. 4, pp. 1640–1645, Feb. doi: (2006). https://doi.org/10.1021/la0526434

  8. Wang, P., Zhao, T., Bian, R., Wang, G., Liu, H.: “Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures,” ACS Nano, vol. 11, no. 12, pp. 12385–12391, Dec. doi: (2017). https://doi.org/10.1021/acsnano.7b06371

  9. Bonse, J., Gräf, S.: Maxwell meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photon Rev. 14(10), 2000215 (Oct. 2020). doi: https://doi.org/10.1002/lpor.202000215

  10. Shimada, H., Kato, S., Watanabe, T., Yamaguchi, M.: “Direct Laser Processing of Two-Scale Periodic Structures for Superhydrophobic Surfaces Using a Nanosecond Pulsed Laser,” Lasers in Manufacturing and Materials Processing, vol. 7, no. 4, pp. 496–512, Dec. doi: (2020). https://doi.org/10.1007/s40516-020-00130-2

  11. Kiran Kumar, K., Samuel, G.L., Shunmugam, M.S.: Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. J. Mater. Process. Technol. 263, 266–275 (Jan. 2019). doi: https://doi.org/10.1016/j.jmatprotec.2018.08.028

  12. Kiran Kumar, K., Samuel, G., Shunmugam, M.: “An in-depth investigation into high fluence femtosecond laser percussion drilling of titanium alloy,” Proc Inst Mech Eng B J Eng Manuf, p. 095440542211109, Jul. doi: (2022). https://doi.org/10.1177/09544054221110959

  13. Penzkofer, A., von der Linde, D., Laubereau, A., Kaiser, W.: Generation of single picosecond and subpicosecond light pulses. Appl. Phys. Lett. 20(9), 351–354 (May 1972). doi: https://doi.org/10.1063/1.1654182

  14. Mao, B., Siddaiah, A., Liao, Y., Menezes, P.L.: “Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review,” Journal of Manufacturing Processes, vol. 53. Elsevier Ltd, pp. 153–173, May 01, doi: (2020). https://doi.org/10.1016/j.jmapro.2020.02.009

  15. Satapathy, P., et al.: Observation of continuous and non-continuous laser induced periodic structures on silicon. J. Laser Micro Nanoengineering. 13(3), 146–149 (Dec. 2018). doi: https://doi.org/10.2961/jlmn.2018.03.0001

  16. Vorobyev, A.Y., Guo, C.: “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl Phys A Mater Sci Process, vol. 86, no. 3, pp. 321–324, Mar. doi: (2007). https://doi.org/10.1007/s00339-006-3800-0

  17. Shen, M., Carey, J.E., Crouch, C.H., Kandyla, M., Stone, H.A., Mazur, E.: “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett, vol. 8, no. 7, pp. 2087–2091, Jul. doi: (2008). https://doi.org/10.1021/nl080291q

  18. Taylor, R., Hnatovsky, C., Simova, E.: “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photonics Review, vol. 2, no. 1–2, pp. 26–46, Apr. doi: (2008). https://doi.org/10.1002/lpor.200710031

  19. Hiraoka, H., Wong, W.Y.Y., Wong, T.-M., Hung, C.-T., Loh, W.-C., Lee, F.M.: Pulsed laser processings of polymer and ceramic surfaces. ” J. Photopolym. Sci. Technol. 10(2), 205–209 (1997). doi: https://doi.org/10.2494/photopolymer.10.205

    Article  Google Scholar 

  20. Baudach, S., Bonse, J., Kautek, W.: Ablation experiments on polyimide with femtosecond laser pulses. Appl. Phys. A Mater. Sci. Process. 69(7), S395–S398 (1999). doi: https://doi.org/10.1007/s003390051424

    Article  Google Scholar 

  21. Vorobyev, A.Y., Guo, C.: Direct femtosecond laser surface nano/microstructuring and its applications. Laser and Photonics Reviews. 7, 385–407 (May 2013). no. 3doi: https://doi.org/10.1002/lpor.201200017

  22. Bonse, J., Hohm, S., Kirner, S., Rosenfeld, A., Kruger, J.: Laser-Induced Periodic Surface Structures-A Scientific Evergreen. IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (May 2017). doi: https://doi.org/10.1109/JSTQE.2016.2614183

  23. Tsukamoto, M., et al.: “Microstructures formation on titanium plate by femtosecond laser ablation,” J Phys Conf Ser, vol. 59, no. 1, pp. 666–669, doi: (2007). https://doi.org/10.1088/1742-6596/59/1/140

  24. Sharma, A., Marla, D., Joshi, S.S., Bathe, R.: “A Study of Femtosecond Laser Processed Microtextures on Silicon Wafers to Enhance Optical Absorption,” Lasers in Manufacturing and Materials Processing, pp. 1–15, Jun. doi: (2022). https://doi.org/10.1007/s40516-022-00176-4

  25. Zuhlke, C.A., Anderson, T.P., Alexander, D.R.: “Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses,” Opt Express, vol. 21, no. 7, p. 8460, Apr. doi: (2013). https://doi.org/10.1364/oe.21.008460

  26. Trtica, M., et al.: Titanium surface modification using femtosecond laser with 10 13-1015 W/cm2 intensity in vacuum. Laser Part. Beams. 31(1), 29–36 (2013). doi: https://doi.org/10.1017/S0263034612000924

    Article  Google Scholar 

  27. Yang, Z., Zhu, C., Zheng, N., Le, D., Zhou, J.: “Superhydrophobic surface preparation and wettability transition of titanium alloy with micro/nano hierarchical texture,” Materials, vol. 11, no. 11, Nov. doi: (2018). https://doi.org/10.3390/ma11112210

  28. Yue, H., Deng, J., Ge, D., Li, X., Zhang, Y.: “Effect of surface texturing on tribological performance of sliding guideway under boundary lubrication,” J Manuf Process, vol. 47, pp. 172–182, Nov. doi: (2019). https://doi.org/10.1016/j.jmapro.2019.09.031

  29. Cunha, A., Serro, A.P., Oliveira, V., Almeida, A., Vilar, R., Durrieu, M.C.: Wetting behaviour of femtosecond laser textured Ti-6Al-4V surfaces. Appl. Surf. Sci. 265, 688–696 (Jan. 2013). doi: https://doi.org/10.1016/j.apsusc.2012.11.085

  30. Cunha, A., et al.: Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 360, 485–493 (Jan. 2016). doi: https://doi.org/10.1016/j.apsusc.2015.10.102

  31. Cunha, A., et al.: “Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces,” Nanomedicine, vol. 10, no. 5, pp. 725–739, doi: (2015). https://doi.org/10.2217/nnm.15.19

  32. Schnell, G., Duenow, U., Seitz, H.: “Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces,” Materials, vol. 13, no. 4, Feb. doi: (2020). https://doi.org/10.3390/ma13040969

  33. Schnell, G., et al.: Heat accumulation during femtosecond laser treatment at high repetition rate – A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V. Appl. Surf. Sci. 570 (Dec. 2021). doi: https://doi.org/10.1016/j.apsusc.2021.151115

  34. Xu, Z., Ouyang, W., Liu, Y., Jiao, J., Liu, Y., Zhang, W.: Effects of laser polishing on surface morphology and mechanical properties of additive manufactured TiAl components. J. Manuf. Process. 65, 51–59 (May 2021). doi: https://doi.org/10.1016/j.jmapro.2021.03.014

  35. Heitz, J., et al.: Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion. Appl. Phys. A Mater. Sci. Process. 123(12), 1–9 (Dec. 2017). doi: https://doi.org/10.1007/s00339-017-1352-0

  36. Hensel, R., Helbig, R., Aland, S., Voigt, A., Neinhuis, C., Werner, C.: “Tunable nano-replication to explore the omniphobic characteristics of springtail skin,” NPG Asia Mater, vol. 5, no. 1, pp. e37–e37, Jan. doi: (2013). https://doi.org/10.1038/am.2012.66

  37. Baron, C.F., et al.: Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability. Beilstein J. Nanotechnol. 9(1), 2802–2812 (2018). doi: https://doi.org/10.3762/bjnano.9.262

    Article  Google Scholar 

  38. Jagdheesh, R., Pathiraj, B., Karatay, E., Römer, G.R.B.E.: and A. J. Huis In’T Veld, “Laser-induced nanoscale superhydrophobic structures on metal surfaces,” Langmuir, vol. 27, no. 13, pp. 8464–8469, Jul. doi: (2011). https://doi.org/10.1021/la2011088

  39. Wan, H., Min, J., Lin, J., Carlson, B.E., Maddela, S., Sun, C.: “Effect of laser spot overlap ratio on surface characteristics and adhesive bonding strength of an Al alloy processed by nanosecond pulsed laser,” J Manuf Process, vol. 62, pp. 555–565, Feb. doi: (2021). https://doi.org/10.1016/j.jmapro.2020.12.055

Download references

Funding

Authors would like to thank the financial support from Aeronautics Research and Development Board (ARDB), Government of India, Project Number: ARDB/01/2031768/M/I dated 10 August 2015. Also thank different labs at IIT Madras including scanning electron microscope (HRSEM) facilities.

Author information

Authors and Affiliations

Authors

Contributions

Munaswamy Murugesh: Experiments, Conceptualization, Methodology, Characterization, Analysis and Visualization; Sasaki Koichi : Conceptualization, Visualization, Resources; G. L. Samuel : Conceptualization, Methodology, Supervision, Resources.

Corresponding author

Correspondence to Samuel GL.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munaswamy, M., Sasaki, K. & Samuel, G. Multi-Scale Hierarchical Micro/Nano Surface Structures Induced by high Repetition rate femto-second Laser Pulses on Ti6Al4V in Ambient air. Lasers Manuf. Mater. Process. 10, 118–140 (2023). https://doi.org/10.1007/s40516-022-00197-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00197-z

Keywords

Navigation