Skip to main content

Advertisement

Log in

Effect of the Medium on the Laser Ablation Characteristics of Aluminum Irradiated by Femtosecond Laser Pulses

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of surrounding medium on the laser ablation characteristics of aluminum (Al). Al specimens were subjected to tightly focused laser beam in three dissimilar media; air, water and ionic liquid. For processing, the laser beam was tightly focused using a converging lens and the laser pulse energy was varied from 1–5 µJ. The produced laser tracks and areas were examined by field emission scanning electron microscope (FESEM) for their microstructural characterization. Laser induced periodic surface structure (LIPSS) were observed in air whereas no LIPSS were witnessed in the case of water and ionic liquid media for the same laser pulse energy. The laser ablated surface was cleaner for liquid media as compared to air due to change in laser-matter interactions and hampered settling down of the ablated debris on the surface. In addition to LIPSS three different structures; protrusions, pits and complex conical spikes were observed in different media. The average periodicity of the produced LIPSS was calculated to be 710 ± 10 nm while average diameter of protrusions and pits was found to be 115 ± 30 nm and 93 ± 35 nm, respectively. The ablation mechanism in air and liquid has been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data analyzed during this study are included in this published article.

References

  1. Treiger, L.M., Popov, A.A.: Laser direct writing of aluminum multilevel interconnects for VLSI applications. Microelectron. Eng. 19, 729–732 (1992). https://doi.org/10.1016/0167-9317(92)90532-V

    Article  Google Scholar 

  2. Martin, J., Plain, J.: Fabrication of aluminium nanostructures for plasmonics. J. Phys. D Appl. Phys. 48, 184002 (2015). https://doi.org/10.1088/0022-3727/48/18/184002

    Article  Google Scholar 

  3. Ashkenazi, D.: How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technol. Forecast. Soc. Change 143, 101–113 (2019). https://doi.org/10.1016/j.techfore.2019.03.011

    Article  Google Scholar 

  4. Roy, P., Sarangi, S.K., Ghosh, A., Chattopadhyay, A.K.: Machinability study of pure aluminium and Al – 12% Si alloys against uncoated and coated carbide inserts. Int. J. Refract. Met. Hard Mater. 27, 535–544 (2009). https://doi.org/10.1016/j.ijrmhm.2008.04.008

    Article  Google Scholar 

  5. Balachninaitė, O., Tamulienė, V., Eičas, L., Vaičaitis, V.: Laser micromachining of steel and copper using femtosecond laser pulses in GHz burst mode. Results Phys. 22 (2021). https://doi.org/10.1016/j.rinp.2021.103847

  6. Halbwax, M., Sarnet, T., Hermann, J., Delaporte, P., Sentis, M., Fares, L., Haller, G.: Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis. Appl. Surf. Sci. 254, 911–915 (2007). https://doi.org/10.1016/j.apsusc.2007.07.202

    Article  Google Scholar 

  7. Farson, D.F., Choi, H.W., Zimmerman, B., Steach, J.K., Chalmers, J.J., Olesik, S.V., Lee, L.J.: Femtosecond laser micromachining of dielectric materials for biomedical applications. J. Micromech. Microeng. 18 (2008). https://doi.org/10.1088/0960-1317/18/3/035020

  8. Jiang, L.J., Maruo, S., Osellame, R., Xiong, W., Campbell, J.H., Lu, Y.F.: Femtosecond laser direct writing in transparent materials based on nonlinear absorption. MRS Bull. 41, 975–983 (2016). https://doi.org/10.1557/mrs.2016.272

    Article  Google Scholar 

  9. Cerami, L., Mazur, E., Nolte, S., Schaffer, C.B.: Femtosecond laser micromachining. In: Ultrafast Nonlinear Opt. Springer Int. Publishing. 287–321 (2013). https://doi.org/10.1007/978-3-319-00017-6_12

  10. Santos, M.C., Machado, A.R., Sales, W.F., Barrozo, M.A.S., Ezugwu, E.O.: Machining of aluminum alloys: a review. Int. J. Adv. Manuf. Technol. 86, 3067–3080 (2016). https://doi.org/10.1007/s00170-016-8431-9

    Article  Google Scholar 

  11. Vorobyev, A.Y., Guo, C.: Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385–407 (2013). https://doi.org/10.1002/lpor.201200017

    Article  Google Scholar 

  12. Gao, B., Zhang, S., Ju, X., Lin, Y., Wang, X.: Femtosecond pulsed laser deposition of nanostructured TiO2 films in atmosphere. AIP Adv. 7 (2017). https://doi.org/10.1063/1.4997398

  13. Sharma, S.P., Oliveira, V., Vilar, R.: Morphology and structure of particles produced by femtosecond laser ablation of fused silica. Appl. Phys. A Mater. Sci. Process. 122 (2016). https://doi.org/10.1007/s00339-016-9859-3

  14. Shaheen, M.E., Gagnon, J.E., Fryer, B.J.: Femtosecond laser ablation of brass in air and liquid media. J. Appl. Phys. 113 (2013). https://doi.org/10.1063/1.4808455

  15. Garasz, K., Kocik, M.: Experimental investigations on laser ablation of aluminum in sub-picosecond regimes. Appl. Sci. 10, 1–8 (2020). https://doi.org/10.3390/app10248883

    Article  Google Scholar 

  16. Harilal, S.S., Freeman, J.R., Diwakar, P.K., Hassanein, A.: Femtosecond laser ablation: Fundamentals and applications. Springer Ser. Opt. Sci. 182, 143–166 (2014). https://doi.org/10.1007/978-3-642-45085-3_6

    Article  Google Scholar 

  17. Kovačević, A.G., Petrović, S.M., Salatić, B., Lekić, M., Vasić, B., Gajić, R., Pantelić, D., Jelenković, B.M.: Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. Opt. Quantum Electron. 52, 1–9 (2020). https://doi.org/10.1007/s11082-020-02398-2

    Article  Google Scholar 

  18. Gregorčič, P., Sedlaček, M., Podgornik, B., Reif, J.: Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations. Appl. Surf. Sci. 387, 698–706 (2016). https://doi.org/10.1016/j.apsusc.2016.06.174

    Article  Google Scholar 

  19. Gräf, S.: Formation of laser-induced periodic surface structures on different materials: Fundamentals, properties and applications. Adv. Opt. Technol. 9, 11–39 (2020). https://doi.org/10.1515/aot-2019-0062

    Article  Google Scholar 

  20. Phillips, K.C., Gandhi, H.H., Mazur, E., Sundaram, S.K.: Ultrafast laser processing of materials: a review. Adv. Opt. Photonics 7, 684 (2015). https://doi.org/10.1364/aop.7.000684

    Article  Google Scholar 

  21. Birnbaum, M.: Semiconductor Surface Damage Produced by Ruby Lasers, 3688 1–3. (1965). https://doi.org/10.1063/1.1703071

  22. Bonse, J., Graf, S.: Maxwell meets Marangoni—A review of theories on laser‐induced periodic surface structures. Laser Photonics Rev. 14, 2000215 (2020). https://doi.org/10.1002/lpor.202000215

  23. Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Saltuganov, P.N., Seleznev, L.V., Sinitsyn, D.V., Sunchugasheva, E.S.: Femtosecond laser fabrication of sub-diffraction nanoripples on wet Al surface in multi-filamentation regime: High optical harmonics effects? Appl. Surf. Sci. 292, 678–681 (2014). https://doi.org/10.1016/j.apsusc.2013.12.032

    Article  Google Scholar 

  24. Wagner, R., Gottmann, J., Horn, A., Kreutz, E.W.: Subwavelength ripple formation induced by tightly focused femtosecond laser radiation. Appl. Surf. Sci. 252, 8576–8579 (2006). https://doi.org/10.1016/j.apsusc.2005.11.077

    Article  Google Scholar 

  25. Sipe, J.E., Young, J.F., Preston, J.S., van Driel, H.M.: Laser induced periodic surface structures. I Theory. Phys. Rev. B - Condens. Matter Mater. Phys. 27, 1141–1154 (1983)

    Article  Google Scholar 

  26. Kunz, C., Büttner, T.N., Naumann, B., Boehm, A.V., Gnecco, E., Bonse, J., Neumann, C., Turchanin, A., Müller, F.A., Gräf, S.: Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers. Carbon N. Y. 133, 176–185 (2018). https://doi.org/10.1016/j.carbon.2018.03.035

    Article  Google Scholar 

  27. Rohloff, M., Das, S.K., Höhm, S., Grunwald, R., Rosenfeld, A., Krüger, J., Bonse, J.: Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences. J. Appl. Phys. 110 (2011). https://doi.org/10.1063/1.3605513

  28. Höhm, S., Herzlieb, M., Rosenfeld, A., Krüger, J., Bonse, J.: Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics. Appl. Surf. Sci. 374, 331–338 (2016). https://doi.org/10.1016/j.apsusc.2015.12.129

    Article  Google Scholar 

  29. Bonse, J., Kruger, J., Hohm, S., Rosenfeld, A.: Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 1–7 (2012)

    Article  Google Scholar 

  30. Hikage, H., Nosaka, N., Matsuo, S.: High-spatial-frequency periodic surface structures on steel substrate induced by subnanosecond laser pulses. Appl. Phys. Express. 10 (2017). https://doi.org/10.7567/APEX.10.112701

  31. Le Harzic, R., Stracke, F., Zimmermann, H.: Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate. J. Appl. Phys. 113 (2013). https://doi.org/10.1063/1.4803895

  32. Sharma, S.P., Oliveira, V., Herrero, P., Vilar, R.: Internal structure of the nanogratings generated inside bulk fused silica by ultrafast laser direct writing. J. Appl. Phys. 116 (2014). https://doi.org/10.1063/1.4892562

  33. Calvani, P., Bellucci, A., Girolami, M., Orlando, S., Valentini, V., Lettino, A., Trucchi, D.M.: Optical properties of femtosecond laser-treated diamond. Appl. Phys. A Mater. Sci. Process. 117, 25–29 (2014). https://doi.org/10.1007/s00339-014-8311-9

    Article  Google Scholar 

  34. Gregorčič, P., Conradi, M., Hribar, L., Hočevar, M.: Long-term influence of laser-processing parameters on (Super)hydrophobicity development and stability of stainless-steel surfaces. Mater. (Basel). 11 (2018). https://doi.org/10.3390/ma11112240

  35. Oliveira, V., Sharma, S.P., de Moura, M.F.S.F., Moreira, R.D.F., Vilar, R.: Surface treatment of CFRP composites using femtosecond laser radiation. Opt. Lasers Eng. 94 (2017). https://doi.org/10.1016/j.optlaseng.2017.02.011

  36. Sharma, S.P., Ting, J.M., Vilar, R.: Electron microscopy study of surface-treated carbon fiber for interface modification in composites. Diam. Relat. Mater. 109, 108021 (2020). https://doi.org/10.1016/j.diamond.2020.108021

    Article  Google Scholar 

  37. Bonse, J., Kirner, S.V., Griepentrog, M., Spaltmann, D., Krüger, J.: Femtosecond laser texturing of surfaces for tribological applications. Mater. (Basel) 11, 1–19 (2018). https://doi.org/10.3390/ma11050801

    Article  Google Scholar 

  38. Carvalho, A., Grenho, L., Fernandes, M.H., Daskalova, A., Trifonov, A., Buchvarov, I., Monteiro, F.J.: Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram. Int. 46, 1383–1389 (2020). https://doi.org/10.1016/j.ceramint.2019.09.101

    Article  Google Scholar 

  39. Florian, C., Kirner, S.V., Krüger, J., Bonse, J.: Surface functionalization by laser-induced periodic surface structures. J. Laser Appl. 32, 022063 (2020). https://doi.org/10.2351/7.0000103

    Article  Google Scholar 

  40. Yong, J., Chen, F., Yang, Q., Hou, X.: Femtosecond laser controlled wettability of solid surfaces. Soft Matter 11, 8897–8906 (2015). https://doi.org/10.1039/c5sm02153g

    Article  Google Scholar 

  41. Lutey, A.H.A., Gemini, L., Romoli, L., Lazzini, G., Fuso, F., Faucon, M., Kling, R.: Towards laser-textured antibacterial surfaces. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-28454-2

    Article  Google Scholar 

  42. Villapún, V.M., Gomez, A.P., Wei, W., Dover, L.G., Thompson, J.R., Barthels, T., Rodriguez, J., Cox, S., González, S.: Development of antibacterial steel surfaces through laser texturing. APL Mater. 8 (2020). https://doi.org/10.1063/5.0017580

  43. Luo, X., Yao, S., Zhang, H., Cai, M., Liu, W., Pan, R., Chen, C., Wang, X., Wang, L., Zhong, M.: Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation. Opt. Laser Technol. 124, 105973 (2020). https://doi.org/10.1016/j.optlastec.2019.105973

    Article  Google Scholar 

  44. Schwibbert, K., Menzel, F., Epperlein, N., Bonse, J., Krüger, J.: Bacterial adhesion on femtosecond laser-modified polyethylene. Mater. (Basel) 12, 16–25 (2019). https://doi.org/10.3390/ma12193107

    Article  Google Scholar 

  45. Rushui, B., Liying, P., Qiannan, S., Yunfan, Z., Lingyun, Z., Yan W.: Metallic antibacterial surface treatments of dental and orthopedic materials. Materials. 13, 4595 (2020). https://doi.org/10.3390/ma13204594

  46. Amoruso, S., Bruzzese, R., Vitiello, M., Nedialkov, N.N., Atanasov, P.A.: Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum. J. Appl. Phys. 98, 044907 (2005). https://doi.org/10.1063/1.2032616

    Article  Google Scholar 

  47. Kang, X.W., Chen, L., Chen, J., Sheng, Z.M.: Femtosecond laser ablation of an aluminum target in air. Wuli Xuebao/Acta Phys. Sin. 65 (2016). https://doi.org/10.7498/aps.65.055204

  48. Zhu, S., Lu, Y.F., Hong, M.H.: Laser ablation of solid substrates in a water-confined environment. Appl. Phys. Lett. 79, 1396–1398 (2001). https://doi.org/10.1063/1.1400086

    Article  Google Scholar 

  49. Perrie, W., Gill, M., Robinson, G., Fox, P., O’Neill, W.: Femtosecond laser micro-structuring of aluminium under helium. Appl. Surf. Sci. 230, 50–59 (2004). https://doi.org/10.1016/j.apsusc.2003.12.035

    Article  Google Scholar 

  50. Kudryashov, S.I., Saraeva, I.N., Lednev, V.N., Pershin, S.M., Rudenko, A.A., Ionin, A.A.: Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol. Appl. Phys. Lett. 112 (2018). https://doi.org/10.1063/1.5026591

  51. Robinson, G.M., Jackson, M.J.: Femtosecond laser micromachining of aluminum surfaces under controlled gas atmospheres. J. Mater. Eng. Perform. 15, 155–160 (2006). https://doi.org/10.1361/105994906X95805

    Article  Google Scholar 

  52. Kanitz, A., Hoppius, J.S., Gurevich, E.L., Ostendorf, A.: Influence of the liquid on femtosecond laser ablation of iron, in: Phys. Procedia, Elsevier B.V., pp.114–122. (2016). https://doi.org/10.1016/j.phpro.2016.08.022

  53. Stratakis, E., Zorba, V., Barberoglou, M., Fotakis, C., Shafeev, G.A.: Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids. Appl. Surf. Sci. 255, 5346–5350 (2009). https://doi.org/10.1016/j.apsusc.2008.07.183

    Article  Google Scholar 

  54. Shih, C.Y., Gnilitskyi, I., Shugaev, M.V., Skoulas, E., Stratakis, E., Zhigilei, L.V.: Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. Nanoscale. 12, 7674–7687 (2020). https://doi.org/10.1039/d0nr00269k

    Article  Google Scholar 

  55. Ali, N., Bashir, S., Umm-I-Kalsoom, M., Shahid Rafique, N., Begum, W., Husinsky, A., Ajami, C.S.R., Natahala: Femtosecond laser induced nanostructuring of zirconium in liquid confined environment. Chin. Phys B. 26 (2017). https://doi.org/10.1088/1674-1056/26/1/015204

  56. Hajiesmaeilbaigi, F., Mohammadalipour, A., Sabbaghzadeh, J., Hoseinkhani, S., Fallah, H.R.: Preparation of silver nanoparticles by laser ablation and fragmentation in pure water. Laser Phys. Lett. 3, 252–256 (2006). https://doi.org/10.1002/lapl.200510082

    Article  Google Scholar 

  57. Sylvestre, J.P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.T.: Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 108, 16864–16869 (2004). https://doi.org/10.1021/jp047134

    Article  Google Scholar 

  58. Besner, S., Degorce, J.Y., Kabashin, A.V., Meunier, M.: Influence of ambient medium on femtosecond laser processing of silicon. Appl. Surf. Sci. 247, 163–168 (2005). https://doi.org/10.1016/j.apsusc.2005.01.137

    Article  Google Scholar 

  59. Derrien, T.J.Y., Koter, R., Krüger, J., Höhm, S., Rosenfeld, A., Bonse, J.: Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water. J. Appl. Phys. 116 (2014). https://doi.org/10.1063/1.4887808

  60. Kennedy, P.K., Hammer D. X., Rockwell B.A.: Laser-induced breakdown in aqueous media. Prog. Quantum Electron. 21, 155–248 (1997). https://doi.org/10.1016/S0079-6727(97)00002-5

  61. Petrov, Y.V., Khokhlov, V.A., Zhakhovsky, V.V., Inogamov, N.A.: Laser-induced ablation of metal in liquid (2018). http://arxiv.org/abs/1812.09109

  62. Vilar, R., Sharma, S.P., Almeida, A., Cangueiro, L.T., Oliveira, V.: Surface morphology and phase transformations of femtosecond laser-processed sapphire. Appl. Surf. Sci. 288 (2014). https://doi.org/10.1016/j.apsusc.2013.10.026

  63. Inogamov, N.A., Khokhlov, V.A., Petrov, Y.V., Zhakhovsky, V.V.: Hydrodynamic and molecular-dynamics modeling of laser ablation in liquid: from surface melting till bubble formation. Opt. Quantum Electron. 52, 1–24 (2020). https://doi.org/10.1007/s11082-019-2168-2

    Article  Google Scholar 

  64. Liu, C.: A study of particle generation during laser ablation with applications, Ph.D. Thesis, Univ. California, Berkeley (2005)

Download references

Acknowledgements

One of the authors; S.P. Sharma is thankful to Fundação para a Ciência ea Tecnologia Lisbon for the postdoctoral fellowship SFRH/BPD/78871/2011 provided during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahendra P. Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.P., Vilar, R. Effect of the Medium on the Laser Ablation Characteristics of Aluminum Irradiated by Femtosecond Laser Pulses. Lasers Manuf. Mater. Process. 9, 622–639 (2022). https://doi.org/10.1007/s40516-022-00194-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00194-2

Keywords

Navigation