Skip to main content
Log in

Enhancement of Antimicrobial Activity of Silver Nanoparticles Using Lasers

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Bacterial resistance to antibiotic treatment raises serious public health-related concerns, in parallel with increasing efforts to develop efficient and safe therapeutic alternatives. Silver nanoparticles (Ag-NPs) have been synthesized and enhanced to increase their antibacterial properties using two primary types of lasers. These include the Q-switched Nd:YAG laser and the 405 nm diode laser. The former was used to prepare Ag-NPs colloidal solutions that shown effectiveness against sensitive Staphylococcus aureus, whereas the latter was utilized to activate Ag-NPs against methicillin-resistant S. aureus (MRSA). The approach of this work is to enhance the antibacterial potential of Q-switched Nd:YAG synthesized Ag-NPs against both normal and resistant strains of S. aureus, once by using them in combination with antibiotics and another time by exposing them to 405 nm diode laser. The synthesized silver nanoparticles were characterized by different methods such as UV–Visible, TEM, AFM and zeta potential. These characterizations revealed the formation of AgNPs with sizes in the range from 10 to 30 nm in response to pulsed laser ablation of pure Ag metal plates. The NPs efficiently deactivated S. aureus. The minimum inhibitory concentration (MIC) of AgNPs was 60 µg/ml, which caused a growth inhibition zone with a diameter of 12 mm. A remarkable improvement in antibacterial activity was achieved upon the irradiation of AgNPs with 405 nm laser light, causing a reduction of the MIC to the half (30 µg/ml), even when the treated strain is known to be resistant (MRSA). It is concluded that further enhancement of laser-synthesized AgNPs leads to more powerful antimicrobial impacts that even involve antibiotic-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdelghany, A., Menazea, A., Abd-El-Maksoud, M., Khatab, T.: Pulsed laser ablated zeolite nanoparticles: A novel nano-catalyst for the synthesis of 1,8-dioxo-octahydroxanthene and N-aryl-1,8-dioxodecahydroacridine with molecular docking validation. ApplOrganometal. Chem. 34, e5250 (2020)

    Google Scholar 

  2. Abderrafi, K., Jimenez, E., et al.: Production of Nanometer-Size GaAs Nanocrystals by Nanosecond Laser Ablation in Liquid. J. Nanosci. Nanotechnol. 12, 6774–6778 (2012)

    Article  Google Scholar 

  3. Agnihotri, S., Mukherji, S., Mukherji, S.: Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4, 3974–3983 (2014)

    Article  Google Scholar 

  4. Ahmed, M., Meera Moydeen, A., Ismail, A., El-Naggar, M., Menazea, A., El-Newehy, M.: Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles. J. Mol. Struc. 1225, 129–138 (2021)

    Article  Google Scholar 

  5. Ahmed, M., El-Naggar, M., Aldalbahi, A., El-Newehy, M., Menazea, A.: Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J. Molec. Liquids 315 (2020)

  6. Ahmed, M., Menazea, A., Mansour, S., Al-Wafi, R.: Differentiation between cellulose acetate and polyvinyl alcohol nanofibrous scaffolds containing magnetite nanoparticles/graphene oxide via pulsed laser ablation technique for tissue engineering applications. J. Mater. Res. Technol. 9, 11629–11640 (2020)

    Article  Google Scholar 

  7. Ahmed, M., Mansour, S., Al-wafi, R., Menazea, A.: Composition and design of nanofibrous scaffolds of Mg/Se- hydroxyapatite/graphene oxide @ ε-polycaprolactone for wound healing applications. J. Market. Res. 9, 7472–7485 (2020)

    Google Scholar 

  8. Akram, F., El-Tayeb, T., Abou-Aisha, K., El-Azizi, M.: A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) Comb. Ann. Clin. Microbiol. Antimicrob. 15, 48 (2016)

    Article  Google Scholar 

  9. Alamro, F., Toghan, A., Ahmed, H., Mostafa, A., Alakhras, A., Mwafy, E.: Multifunctional leather surface embedded with zinc oxide nanoparticles by pulsed laser ablation method. Microsc. Res. Tech. 85, 1611–1617 (2021)

    Article  Google Scholar 

  10. Alamro, F., Mostafa, A., Abu Al-Ola, K., Ahmed, H., Toghan, A.: Synthesis of ag nanoparticles-decorated cnts via laser ablation method for the enhancement the photocatalytic removal of naphthalene from water. Nanomaterials 11(8), 2142 (2021)

    Article  Google Scholar 

  11. Ash, R., Mauck, B., Morgan, M.: Antibiotic resistance of Gram-Negative bacteria in rivers. Emerg. Infect. Dis. 7, 8 (2002)

    Google Scholar 

  12. Astuti, S., Kharisma, D., Kholimatussa, S., Zaidan, H.: An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans. AIP Conf. Proc. 1888, 020016 (2007)

    Article  Google Scholar 

  13. Ayman, M., Mostafa, A.: Menazea: Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiat. Phys. Chem. 176, (2020)

  14. Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N.: Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 22, 7202 (2021)

    Article  Google Scholar 

  15. Catalina, M.J., Eric, M., Hoek, V.: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart, Res. 12, 1531–1551 (2010)

    Article  Google Scholar 

  16. Czaplewski, L., Bax, R., Clokie, M., Dawson, M., Fairhead, H., Fischetti, V., et al.: Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis. 16, 239–251 (2016)

    Article  Google Scholar 

  17. Dong, P., Ha, C., Binh, L., Kasbohm, J.: Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett 2, 1–9 (2012)

    Google Scholar 

  18. El Faham, M., Mostafa, A., Toghan, A.: Facile synthesis of Cu2O nanoparticles using pulsed laser ablation method for optoelectronic applications. Colloids Surf. A: Physicochem. Eng. Aspects 630, 127562 (2021)

    Article  Google Scholar 

  19. El-Kheshen, A., El-Rab, S.: Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Pharma Chem 4, 53–65 (2012)

    Google Scholar 

  20. El-Saied, H., Mostafa, A., Hasanin, M., Mwafy, E., Mohammed, A.: Synthesis of Antimicrobial Cellulosic Derivative and its Catalytic Activity. J King Saud Univ.-Sci. 32(1), 436–442 (2020)

    Article  Google Scholar 

  21. Fayaz, A., Balaji, K., GirilalM, Y.R., Kalaichelvan, P., Venketesan, R.: Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram negative bacteria. Nanomed.: Nanotechnol. Biol. Med. 61, 103–109 (2010)

    Article  Google Scholar 

  22. Friedman, N.D., Temkin, E., Carmeli, Y.: The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22, 416–422 (2016)

    Article  Google Scholar 

  23. Georgios, A., Sotiriou, E., Pratsinis: Antibacterial activity of nanosilver ions and particles. Environ. Sci. Tech. 44, 5649 (2010)

    Article  Google Scholar 

  24. Gurunathan, S., Han, J., Kwon, D., Kim, J.: Enhanced antibacterial and antibiofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett. 9, 373 (2014)

    Article  Google Scholar 

  25. Ilic, V., Saponjic, Z., et al.: Bactericidal efficiency of silver nanoparticles deposited onto radio frequencyplasma pretreated polyester fabrics. Ind. Eng. Chem. Res. 49, 7287 (2010)

    Article  Google Scholar 

  26. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)

    Article  Google Scholar 

  27. Kim, H.S., Ryu, J.H., Jose, B., Lee, B.G., Ahn, B.S., Kang, Y.S.: Formation of silver nanoparticles induced by poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 17, 5817–5820 (2001)

    Article  Google Scholar 

  28. Kim, J., Kuk, E., et al.: Antimicrobial effects of silver nanoparticles. Nanomedicine 3, 95 (2007)

    Article  Google Scholar 

  29. Li, Y., Lu, W., Huang, Q., Huang, M., Li, C., Chen, W.: Copper Sulfide Nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5, 1161–1171 (2010)

    Article  Google Scholar 

  30. Li, Y., Hindi, K., Watts, K., Taylor, J., Zhan, Z., Li, Z., Hunstad, D., Cannon, C., Young, W., Wooley, K.: Shell crosslinked nanoparticles carrying silver antimicrobials as therapeutics. Chem. Commun. (Camb.) 46, 121–123 (2010)

    Article  Google Scholar 

  31. Li, W., Xie, X., Shi, Q., Zeng, H., Ou-Yang, Y., Chen, Y.: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122 (2010)

    Article  Google Scholar 

  32. Liu, W., Wu, Y., Wang, C., et al.: Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 4, 319–330 (2010)

    Article  Google Scholar 

  33. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., Sawabe, T.: J. Phys. Chem. B 104(39), 9111–9117 (2000)

    Article  Google Scholar 

  34. Mannaa, D., Mandal, A., Sen, I., et al.: Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route. Int J Biol Macromol. 80, 455–459 (2015)

    Article  Google Scholar 

  35. Matthews, K., Roberson, J., Gillespie, B., Luther, D., Oliver, S.: Identification and differentiation of coagulase-negative Staphylococcus aureus by polymerase chain reaction. J. Food Prot. 60, 686–688 (1997)

    Article  Google Scholar 

  36. Menazea, A., Mostafa, A.: Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. J. Environ. Chem. Eng. 8, 5 (2020)

    Article  Google Scholar 

  37. Mizajani, F., Ghassempour, A., Aliahmadi, A., Esmaeli, M.: Antibacterial activity of silver nanoparticles on Staphyloccus aureus. Res Microbiol 162, 542–549 (2011)

    Article  Google Scholar 

  38. Mlalila, N., Shaidi, H., Hilonga, A., Kadam, D.: Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol. Sci. Appl. 10, 1–9 (2017)

    Article  Google Scholar 

  39. Mostafa, A., Mwafy, E.: Effect of dual-beam laser radiation for synthetic SnO2/Au nanoalloy for antibacterial activity. J. Mol. Struct. 1222, 128913 (2020)

    Article  Google Scholar 

  40. Mostafa, A., Mwafy, E.: The effect of laser fluence for enhancing the antibacterial activity of NiO nanoparticles by pulsed laser ablation in liquid media. Environ. Nanotechnol. Monitor. Manag. 14, 100382 (2020)

    Article  Google Scholar 

  41. Mostafa, A., Mwafy, E., Hasanin, M.: One-pot synthesis of nanostructured CdS, CuS, and SnS by pulsed laser ablation in liquid environment and their antimicrobial activity. Opt. Laser Technol. 121, 105824 (2020)

    Article  Google Scholar 

  42. Mostafa, A., Mwafy, E., Awwad, N., Ibrahium, H.: Synthesis of multi-walled carbon nanotubes decorated with silver metallic nanoparticles as a catalytic degradable material via pulsed laser ablation in liquid media. Colloids Surf., A 626, 126992 (2021)

    Article  Google Scholar 

  43. Mwafy, E., Hasanin, M., Mostafa, A.: Cadmium Oxide/ TEMPO-Oxidized Cellulose Nanocomposites produced by pulsed Laser Ablation in Liquid Environment: Synthesis, Characterization, and Antimicrobial Activity. Opt. Laser Technol. 120, 105744 (2019)

    Article  Google Scholar 

  44. Pal, S., Tak, Y., Song, J.: Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007)

    Article  Google Scholar 

  45. Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., Fernig, D.: A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, R. Soc. Chem. 139, 0003–2654 (2014)

    Google Scholar 

  46. Rudramurthy, G., Swamy, M., Sinniah, U., Ghasemzadeh, A.: Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21, 836 (2016)

    Article  Google Scholar 

  47. Sadeghi, B., Garmaroudi, F., Hashemi, M., Nezhad, H., Nasrollahi, A., Ardalan, S., Ardalan, S.: Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv. Powder Technol 23, 22–26 (2012)

    Article  Google Scholar 

  48. Salleh, A., Naomi, R., Utami, N.D., Mohammad, A.W., Mahmoudi, E., Mustafa, N., Fauzi, M.B.: The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials (Basel, Switzerland) 10, 1566 (2020)

    Article  Google Scholar 

  49. Sharma, V.K., Yngard, R.A., Lin, Y.: Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 145, 83–96 (2009)

    Article  Google Scholar 

  50. Shuai, C., Liu, G., Yang, Y., Qi, F., Peng, S., Yang, W., He, C., Wang, G., Qian, G.: A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy 74, 104825 (2020)

    Article  Google Scholar 

  51. Smejkal, P., Pfleger, J., Vlckova, B., Dammer, O.: Laser ablation of silver in aqueous ambient: effect of laser pulse wavelength and energy on efficiency of the process. J. Phys: Conf. Ser. 59, 185–188 (2007)

    Google Scholar 

  52. Soo-Hwan, K., Lee, H., Ryu, D., Choi, S., Lee, D.: Antibacterial activity of silver nanoparticles against Staphyloccus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39, 77–85 (2011)

    Google Scholar 

  53. Torres, L., Gmez-Quintero, T., Padron, G., Santana, F., Hernandez, J., Castano, V.: Silver nanoprisms and nanospheres for prosthetic biomaterials. IADR/AADR/CADR General Session and Exhibition, San Francisco (2013)

    Google Scholar 

  54. Velusamy, P., Kumar, G.V., Jeyanthi, V., Das, J., Pachaiappan, R.: Bio-inspired green nanoparticles:synthesis, mechanism, and antibacterial application. Toxicol. Res. 32, 95–102 (2016)

    Article  Google Scholar 

  55. Vogt, R., Dippold, L.: Escherichia coli O157:H7 outbreak associated with consumption of ground beef. Public Health Rep. 120, 174 (2005)

    Article  Google Scholar 

  56. Wei, Q., Fu, J., Shen, J.: Norvancomycin-capped silver nanoparticles: synthesis and antibacterial activities against E. coli. Sci. China, Ser. B: Chem. 50, 418–424 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwah Ali Zaidan Al-Ogaidi.

Ethics declarations

Informed Consent

Not applicable.

Conflicts of Interest / Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ogaidi, M.A.Z., Rasheed, B.G. Enhancement of Antimicrobial Activity of Silver Nanoparticles Using Lasers. Lasers Manuf. Mater. Process. 9, 610–621 (2022). https://doi.org/10.1007/s40516-022-00192-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00192-4

Keywords

Navigation