Skip to main content

Advertisement

Log in

Mathematical Modeling Approaches and New Development in Laser Micro Machining Process: A Review

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Laser micro-machining process (LMMP) is an emerging technology used for various industrial applications like cutting, grooving, turning, drilling and milling etc. It uses the thermal energy to perform ablation process for making complex shapes in any material. Mathematical modeling of the LMMP process could help the researchers to pre-estimate the corresponding results prior to performing the actual machining process and is also very crucial for optimization of the process parameters. Response surface methodology (RSM) has been effectively used to establish the relationship between input variables (scanning speed, pulse frequency, laser power and number of passes) with the outputs like material removal rate (MRR), surface roughness (Ra) and heat effected zone (HAZ). It has also been used to investigate the influence of the input parameters on the output of the process. In this paper different approaches of mathematical model like RSM based model, heat flow model, strain induced model and groove taper angle model have been discussed. Main Significant parameters for surface roughness are laser scan speed and laser pulse intensity. HAZ width is linearly depends upon pulse intensity and inversely depends upon scanning speed. This paper contributes a review of the different methods of mathematical modeling utilized for laser beam micro-machining process and also significant researches done so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

LMMP:

Laser micro-machining process

DES:

Drug-eluting stents

RSM:

Response surface methodology

MOGA-II:

Multi-objective genetic algorithm II

MRR:

Material removal rate

µ-EDM:

Micro-electrical discharge machining

Ra:

Surface roughness

µ-LBM:

Micro-laser beam machining

HAZ:

Heat effected zone

µ-ECM:

Micro-electrochemical machining

PRR:

Pulse repetition rate

SV:

Scanning velocity

References

  1. Parandoush, P., Hossain, A.: A review of modeling and simulation of laser beam machining. Int. J. Mach. Tools Manuf 85, (2014). https://doi.org/10.1016/j.ijmachtools.2014.05.008

  2. Zhao, Y., Zhao, Y.-L., Wang, L.-K.: Application of femtosecond laser micromachining in silicon carbide deep etching for fabricating sensitive diaphragm of high temperature pressure sensor. Sens. Actuators, A 309, (2020). https://doi.org/10.1016/j.sna.2020.112017

  3. Liu, G., Li, Y., Tong, H., Zhong, H.: Effect of anisotropically-etched silicon electrode on electrolytic products flow in micro ECM. Procedia CIRP 95, (2020). https://doi.org/10.1016/j.procir.2020.02.291

  4. Saha, S., Ball, A.K., Mukherjee, A., et al.: Optimization of electrochemical etching process for manufacturing of micro electrodes for micro-EDM application. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 235, (2021). https://doi.org/10.1177/0954405420958961

  5. Aslantas, K., Danish, M., Hasçelik, A., et al.: Investigations on surface roughness and tool wear characteristics in micro-turning of Ti-6Al-4V alloy. Materials 13, (2020). https://doi.org/10.3390/ma13132998

  6. Serje, D., Pacheco, J., Diez, E.: Micromilling research: current trends and future prospects. Int. J. Adv. Manuf. Technol. 111, (2020). https://doi.org/10.1007/s00170-020-06205-w

  7. Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., et al.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15, (2015). https://doi.org/10.1039/C5LC00234F

  8. Gao, S., Huang, H.: Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. 12, (2017). https://doi.org/10.1007/s11465-017-0410-9

  9. James, S., Sonate, A.: Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process. Int. J. Adv. Manuf. Technol. 95, 1539–1547 (2018). https://doi.org/10.1007/s00170-017-1298-6

    Article  Google Scholar 

  10. Goswami, A., Singh, K., Aravindan, S., Rao, Pv.: Optimizing FIB milling process parameters for silicon and its use in nanoreplication. Mater. Manuf. Processes 32, 1052–1058 (2017). https://doi.org/10.1080/10426914.2016.1257127

    Article  Google Scholar 

  11. Goswami, A., Umashankar, R., Gupta, A.K., et al.: Development of a microstructured surface using the FIB. J. Micromanuf. 1, 53–61 (2018). https://doi.org/10.1177/2516598418765357

    Article  Google Scholar 

  12. Haghbin, N., Ahmadzadeh, F., Papini, M.: Masked micro-channel machining in aluminum alloy and borosilicate glass using abrasive water jet micro-machining. J. Manuf. Process. 35, 307–316 (2018). https://doi.org/10.1016/j.jmapro.2018.08.017

    Article  Google Scholar 

  13. Deshmukh, S.S., Goswami, A.: Recent developments in hot embossing – a review. Mater. Manuf. Processes 36, 501–543 (2021). https://doi.org/10.1080/10426914.2020.1832691

    Article  Google Scholar 

  14. Zeng, Z., Wang, Y., Wang, Z., et al.: A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures. Precis. Eng. 36, 500–509 (2012). https://doi.org/10.1016/j.precisioneng.2012.01.005

    Article  Google Scholar 

  15. Chen, C., Li, J., Zhan, S., et al.: Study of micro groove machining by micro ECM. Procedia CIRP 42, 418–422 (2016). https://doi.org/10.1016/j.procir.2016.02.224

    Article  Google Scholar 

  16. Lasagni, F.A., Lasagni, A.F.: [Advanced structured materials] Fabrication and characterization in the micro-nano range, vol 10. In: Laser Micromachining, chapter 2, pp. 29–46 (2011). https://doi.org/10.1007/978-3-642-17782-8

  17. Campanelli, S.L., Ludovico, A.D., Bonserio, C., et al.: Experimental analysis of the laser milling process parameters. J. Mater. Process. Technol. 191, (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.005

  18. Deshmukh, S.S., Goswami, A.: Investigation of deviation in width of embossed micro-structure by hot embossing. IOP Conf. Ser.: Mater. Sci. Eng. 872, 012069 (2020). https://doi.org/10.1088/1757-899X/872/1/012069

    Article  Google Scholar 

  19. Darwish, S.M.H., Ahmed, N., Al-Ahmari, A.M.: Literature review. In: Laser Beam Micro-Milling of Micro-Channels in Aerospace Alloys, pp. 15–80 (2017). https://doi.org/10.1007/978-981-10-3602-6_2

  20. Sahu, A.K., Jha, S.: Microchannel fabrication and metallurgical characterization on titanium by nanosecond fiber laser micromilling. Mater. Manuf. Processes 35, (2020). https://doi.org/10.1080/10426914.2020.1718702

  21. Canel, T., Bağlan, İ, Sinmazcelik, T.: Mathematical modelling of laser ablation of random oriented short glass fiber reinforced Polyphenylene sulphide (PPS) polymer composite. Opt. Laser Technol. 115, (2019). https://doi.org/10.1016/j.optlastec.2019.02.049

  22. Jain, A., Singh, B., Shrivastava, Y.: Heat-affected zone investigation during the laser beam drilling of hybrid composite using statistical approach. Arab. J. Sci. Eng. 45, (2020). https://doi.org/10.1007/s13369-019-04162-5

  23. Ahmed, N., Ahmad, S., Anwar, S., et al.: Machinability of titanium alloy through laser machining: material removal and surface roughness analysis. Int. J. Adv. Manuf. Technol. 105, (2019). https://doi.org/10.1007/s00170-019-04564-7

  24. Bachy, B., Al-Dunainawi, Y.: Influence of the effective parameters on the quality of laser micro-cutting process: Experimental analysis, modeling and optimization. J. Laser Appl. 32, (2020). https://doi.org/10.2351/1.5098080

  25. Farasati, R., Ebrahimzadeh, P., Fathi, J., Teimouri, R.: Optimization of laser micromachining of Ti–6Al–4V. Int. J. Light. Mater. Manuf. 2, (2019). https://doi.org/10.1016/j.ijlmm.2019.08.002

  26. Ahmed, N., Alahmari, A.M., Darwish, S., Naveed, M.: Laser beam micro-milling of nickel alloy: dimensional variations and RSM optimization of laser parameters. Appl. Phys. A 122, (2016). https://doi.org/10.1007/s00339-016-0553-2

  27. Parmar, V., Kumar, A., Prakash, G.V., et al.: Investigation, modelling and validation of material separation mechanism during fiber laser machining of medical grade titanium alloy Ti6Al4V and stainless steel SS316L. Mech. Mater. 137, (2019). https://doi.org/10.1016/j.mechmat.2019.103125

  28. Meijer, J.: Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 149, (2004). https://doi.org/10.1016/j.jmatprotec.2004.02.003

  29. Ahmed, N., Darwish, S., Alahmari, A.M.: Laser ablation and laser-hybrid ablation processes: A review. Mater. Manuf. Processes 31, 1121 (2016). https://doi.org/10.1080/10426914.2015.1048359

    Article  Google Scholar 

  30. Lei, C., Pan, Z., Jianxiong, C., Tu, Y.: Theoretical and experimental analysis of the impact on ablation depth of microchannel milling using femtosecond laser. Opt. Lasers Eng. 103, (2018). https://doi.org/10.1016/j.optlaseng.2017.12.005

  31. Sen, A., Doloi, B., Bhattacharyya, B.: Experimental studies on fibre laser micro-machining of Ti-6al-4v. In: 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), vol. 14) (2014)

  32. Agrawal, P.K.: Laser micromachining: technology and applications. In: International Journal of Engineering Research and Applications (IJERA), National Conference on Advances in Engineering and Technology (2014)

  33. Rejab, M.R.M., Mon, T.T., Rashid, M.F.F., Shalahim, N.S.M. Ismail, M.F.: Virtual laser-micromachining of MEMS components. Int. J. Recent Trends Eng 1(5), 105–109 (2009)

  34. Liu, X., Du, D., Mourou, G.: Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 33, (1997). https://doi.org/10.1109/3.631270

  35. Ohmura, E., Fukumoto, I.: Study on fusing- and vaporizing-process of fcc metal due to laser irradiation: Molecular dynamics simulation. J. Jpn. Soc. Precis. Eng. 61(1), 1433 (1995). https://doi.org/10.2493/jjspe.61.1433

    Article  Google Scholar 

  36. Najeeb, H.N., Dahash, G.A., Haddawi, S.F., Jassim, M.: Study of changes in optical properties of PMMA film before and after irradiation by laser. Chem. Mater. Eng. 2, 145–147 (2014). https://doi.org/10.13189/cme.2014.020603

    Article  Google Scholar 

  37. Sen, A., Doloi, B., Bhattacharyya, B.: Fibre laser microchanneling of polymethyl methacrylate (PMMA). Lasers Eng. 35, 123–138 (2016)

    Google Scholar 

  38. Wu T, Wang Y, Ke C (2018) Experimental investigations of quality trapezoidal shape PMMA microchannel prepared by CO2 laser. In: Yang Y (ed) Tenth International Conference on Information Optics and Photonics. SPIE

  39. Santos, P., Teixidor, D., Maudes, J., Ciurana, J.: Modelling laser milling of microcavities for the manufacturing of DES with ensembles. J. Appl. Math. 2014, (2014). https://doi.org/10.1155/2014/439091

  40. Mahanty, S., Roy, N., Kuar, A., Mitra, S.: Mathematical modelling of the Nd:YAG laser microdrilling of aluminium 5052 for process optimization and analysis of sensitivity. Int. J. Laser Sci. 1, 91–108 (2018)

  41. Teixidor, D., Grzenda, M., Bustillo, A., Ciurana, J.: Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. J. Intell. Manuf. 26, (2015). https://doi.org/10.1007/s10845-013-0835-x

  42. Abdollahi, H., Shahraki, S., Teimouri, R.: Empirical modeling and optimization of process parameters in ultrasonic assisted laser micromachining of Ti–6Al–4V. Int. J. Light. Mater. Manuf. 2, (2019). https://doi.org/10.1016/j.ijlmm.2019.08.008

  43. Hung, C.-H., Chang, F.-Y.: Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser. Opt. Laser Technol. 90, (2017). https://doi.org/10.1016/j.optlastec.2016.10.018

  44. Rao, R., Yadava, V.: Multi-objective optimization of Nd:YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Opt. Laser Technol. 41, (2009). https://doi.org/10.1016/j.optlastec.2009.03.008

  45. Wang, Y., Zhang, Z., Zhang, G., et al.: Study on immersion waterjet assisted laser micromachining process. J. Mater. Process. Technol. 262, (2018). https://doi.org/10.1016/j.jmatprotec.2018.07.004

  46. Poddar, R., Sahu, A.K., Jha, S.: Experimental investigation of nano second fiber laser micro grooving on cylindrical surface. Mater. Today: Proc. 44, (2021). https://doi.org/10.1016/j.matpr.2020.12.120

  47. Abdo, B.M.A., El-Tamimi, A.M., Anwar, S., et al.: Experimental investigation and multi-objective optimization of Nd:YAG laser micro-channeling process of zirconia dental ceramic. Int. J. Adv. Manuf. Technol. 98, (2018). https://doi.org/10.1007/s00170-018-2374-2

  48. Pramanik, D., Das, S., Sarkar, S., Debnath, S.K., Kuar, A.S., Mitra, S.: Experimental Investigation of Fiber Laser Micro-Marking on Aluminum 6061 Alloy. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96968-8_13

  49. Ghosal, A., Manna, A.: Response surface method based optimization of ytterbium fiber laser parameter during machining of Al/Al2O3-MMC. Opt. Laser Technol. 46, (2013). https://doi.org/10.1016/j.optlastec.2012.04.030

  50. Yunus, M., Alsoufi, M.S.: Mathematical modeling of multiple quality characteristics of a laser microdrilling process used in Al7075/SiC p metal matrix composite using genetic programming. Model. Simul. Eng. 2019, (2019). https://doi.org/10.1155/2019/1024365

  51. Kibria, G., Doloi, B., Bhattacharyya, B.: Modelling and optimization of Nd:YAG laser micro-turning process during machining of aluminum oxide (Al 2 O 3) ceramics using response surface methodology and artificial neural network. Manuf. Rev. 1, (2014). https://doi.org/10.1051/mfreview/2014011

  52. Kumar Dubey, A., Yadava, V.: Multi-objective optimisation of laser beam cutting process. Opt. Laser Technol. 40, (2008). https://doi.org/10.1016/j.optlastec.2007.09.002

  53. Kuar, A.S., Doloi, B., Bhattacharyya, B.: Modelling and analysis of pulsed Nd:YAG laser machining characteristics during micro-drilling of zirconia (ZrO2). Int. J. Mach. Tools Manuf 46, (2006). https://doi.org/10.1016/j.ijmachtools.2005.10.016

  54. Umer, U., Mohammed, M.K., Al-Ahmari, A.: Multi-response optimization of machining parameters in micro milling of alumina ceramics using Nd:YAG laser. Measurement 95, (2017). https://doi.org/10.1016/j.measurement.2016.10.004

  55. Arumugam, A., Lakshmanan, P., Palani, S.: Micro groove cutting on the surfaces of Cu-B4C nanocomposites by fiber laser. Surf. Topogr. Metrol. Prop. 9, (2021). https://doi.org/10.1088/2051-672X/ac1c7f

  56. Hossain, A., Hossain, A., Nukman, Y., et al.: A fuzzy logic-based prediction model for kerf width in laser beam machining. Mater. Manuf. Processes 31, 679 (2016). https://doi.org/10.1080/10426914.2015.1037901

    Article  Google Scholar 

  57. Prakash, S., Kumar, S.: Fabrication of rectangular cross-sectional microchannels on PMMA with a CO 2 laser and underwater fabricated copper mask. Opt. Laser Technol. 94, (2017). https://doi.org/10.1016/j.optlastec.2017.03.034

  58. Sen, A., Doloi, B., Bhattacharyya, B.: Parametric influences of fiber laser micro-machining for the generation of micro-channels on PMMA. J. Braz. Soc. Mech. Sci. Eng. 42, (2020). https://doi.org/10.1007/s40430-020-02516-x

  59. Chen, X., Shen, J., Zhou, M.: Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO 2 -laser micromachining and thermal bonding. J. Micromech. Microeng. 26, 107001 (2016). https://doi.org/10.1088/0960-1317/26/10/107001

    Article  Google Scholar 

  60. Zhou, J., Xu, R., Jiao, H., et al.: Study on the mechanism of ultrasonic-assisted water confined laser micromachining of silicon. Opt. Lasers Eng. 132, (2020). https://doi.org/10.1016/j.optlaseng.2020.106118

  61. Feng, S., Huang, C., Wang, J., Zhu, H.: Material removal of single crystal 4H-SiC wafers in hybrid laser-waterjet micromachining process. Mater. Sci. Semicond. Process. 82, (2018). https://doi.org/10.1016/j.mssp.2018.03.035

  62. Deng, D., Xie, Y., Chen, L., Chen, X.: Experimental investigation on laser micromilling of SiC microchannels. Int. J. Adv. Manuf. Technol. 101, (2019). https://doi.org/10.1007/s00170-018-2800-5

  63. Gopinath, C., Lakshmanan, P., Palani, S.: Fiber laser microcutting on duplex steel: parameter optimization by TOPSIS. Mater. Manuf. Processes 37, 985–994 (2022). https://doi.org/10.1080/10426914.2021.1981939

    Article  Google Scholar 

  64. Kar, T., Deshmukh, S.S., Goswami, A.: Investigation of fiber laser micro-channel depth on silicon wafer. Mater. Today: Proc. 60, 2105–2110 (2022). https://doi.org/10.1016/j.matpr.2022.02.024

    Article  Google Scholar 

  65. Saini, S.K., Dubey, A.K., Upadhyay, B.N., Choubey, A.: Study of hole characteristics in Laser Trepan Drilling of ZTA. Opt. Laser Technol. 103, 330–339 (2018). https://doi.org/10.1016/j.optlastec.2018.01.052

    Article  Google Scholar 

  66. Chatterjee, S., Mahapatra, S.S., Bharadwaj, V., et al.: Prediction of quality characteristics of laser drilled holes using artificial intelligence techniques. Eng. Comput. 37, 1181–1204 (2021). https://doi.org/10.1007/s00366-019-00878-y

    Article  Google Scholar 

  67. Cheng, J., Liu, C., Shang, S., et al.: A review of ultrafast laser materials micromachining. Opt. Laser Technol. 46, (2013). https://doi.org/10.1016/j.optlastec.2012.06.037

  68. Teimouri, R., Amini, S., Lotfi, M., Alinaghian, M.: Sustainable drilling process of 1045 steel plates regarding minimum energy consumption and desired work quality. Int. J. Light. Mater. Manuf. 2, (2019). https://doi.org/10.1016/j.ijlmm.2019.04.011

  69. Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. Clarendon Press, Oxford (1959)

    MATH  Google Scholar 

  70. Negarestani, R., Sundar, M., Sheikh, M.A., et al.: Numerical simulation of laser machining of carbon-fibre-reinforced composites. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 224, (2010). https://doi.org/10.1243/09544054JEM1662

  71. Pan, C.T., Hocheng, H.: The anisotropic heat-affected zone in the laser grooving of fiber-reinforced composite material. J. Mater. Process. Technol. 62, (1996). https://doi.org/10.1016/0924-0136(95)02192-2

  72. Weber, R., Hafner, M., Michalowski, A., Graf, T.: Minimum damage in CFRP laser processing. Phys. Procedia 12, (2011). https://doi.org/10.1016/j.phpro.2011.03.137

  73. Cheng, C.F., Tsui, Y.C., Clyne, T.W.: Application of a three-dimensional heat flow model to treat laser drilling of carbon fibre composites. Acta Mater. 46, (1998). https://doi.org/10.1016/S1359-6454(98)00090-1

  74. Tangwarodomnukun, V., Likhitangsuwat, P., Tevinpibanphan, O., Dumkum, C.: Laser ablation of titanium alloy under a thin and flowing water layer. Int. J. Mach. Tools Manuf 89, (2015). https://doi.org/10.1016/j.ijmachtools.2014.10.013

  75. Tangwarodomnukun, V., Chen, H.-Y.: Laser ablation of PMMA in air, water, and ethanol environments. Mater. Manuf. Processes 30, 685 (2015). https://doi.org/10.1080/10426914.2014.994774

    Article  Google Scholar 

  76. Tangwarodomnukun, V., Mekloy, S., Dumkum, C., Prateepasen, A.: Laser micromachining of silicon in air and ice layer. J. Manuf. Process. 36, (2018). https://doi.org/10.1016/j.jmapro.2018.10.008

  77. Faisal, N., Zindani, D., Kumar, K., Bhowmik, S.: Laser micromachining of engineering materials—a review. In: Micro and Nano Machining of Engineering Materials. Springer (2018). https://doi.org/10.1007/978-3-319-99900-5

  78. Colin Moorhouse: Industrial applications of a fiber-based high-average-power picosecond laser. In: Proc. SPIE 7201, Laser Applications in Microelectronic and Optoelectronic Manufacturing VII, 72010F (2009). https://doi.org/10.1117/12.805506

  79. Shi, Y., Jiang, Z., Cao, J., Ehmann, K.F.: Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining. Appl. Surf. Sci. 500, (2020). https://doi.org/10.1016/j.apsusc.2019.144286

  80. Bulushev, E., Bessmeltsev, V., Dostovalov, A., et al.: High-speed and crack-free direct-writing of microchannels on glass by an IR femtosecond laser. Opt. Lasers Eng. 79, (2016). https://doi.org/10.1016/j.optlaseng.2015.11.004

  81. Pattanayak, S., Kumar Sahoo, S.: Micro engraving on 316L stainless steel orthopedic implant using fiber laser. Opt. Fiber Technol. 63, (2021). https://doi.org/10.1016/j.yofte.2021.102479

  82. Zhang, Y., Wang, Y., Zhang, J., et al.: Effects of laser repetition rate and fluence on micromachining of TiC ceramic. Mater. Manuf. Processes 31, 832 (2016). https://doi.org/10.1080/10426914.2015.1037916

    Article  Google Scholar 

  83. Jasim, H.A., Demir, A.G., Previtali, B., Taha, Z.A.: Process development and monitoring in stripping of a highly transparent polymeric paint with ns-pulsed fiber laser. Opt. Laser Technol. 93, (2017). https://doi.org/10.1016/j.optlastec.2017.01.031

  84. Dalaq, A.S., Barthelat, F.: Three-dimensional laser engraving for fabrication of tough glass-based bioinspired materials. JOM 72, (2020). https://doi.org/10.1007/s11837-019-04001-w

Download references

Funding

The present work is supported by Science and Engineering Research Board (SERB) under Grant [SRG/2019002093(vide diary no. SERB/F/692)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjyajyoti Goswami.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, T., Goswami, A. Mathematical Modeling Approaches and New Development in Laser Micro Machining Process: A Review. Lasers Manuf. Mater. Process. 9, 532–568 (2022). https://doi.org/10.1007/s40516-022-00189-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00189-z

Keywords

Navigation