Skip to main content
Log in

Influence of powder characteristics on properties of parts manufactured by metal additive manufacturing

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Additive manufacturing refers to the fabrication of three-dimensional products by adding materials layer by layer to get the required shape and size. Although there are numerous additive manufacturing processes available based on the type of feedstock used, the powder-based additive method is the most popular technique as it is suitable for printing a wide range of materials such as polymers, metals, and ceramic components with superior quality. Over the years, as the technology matured, the transition from prototyping to commercial applications has gathered attention to producing metal powders with stringent and consistent quality. It is a generally accepted fact that the quality of the raw material used in manufacturing is critical in determining the physical, mechanical, and microstructural properties of the finished part which applies to the additive manufacturing processes as well. However, comprehensive knowledge of the correlation between the characteristics of the powder and the quality of additive manufactured parts is scarce. Hence, this review attempts to summarize different powder characterization techniques and understand the relationship between the powder quality and properties of additively manufactured parts by reviewing the recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Vock, S., Klöden, B., Kirchner, A., et al.: Powders for powder bed fusion: a review. Prog Addit. Manuf. 4, 383–397 (2019). https://doi.org/10.1007/s40964-019-00078-6

    Article  Google Scholar 

  2. U.S. Department of Energy: Quadrennial Technology Review, Chap, vol. 6. Innovating Clean Energy Technologies in Advanced Manufacturing (2015)

  3. Oleg, D., Neikov, Stanislav, S., Naboychenko, Nikolay, A., Yefimov: Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Second Edition, ISBN 9780081005439. (2019)

  4. Seyda, V., Herzog, D., Emmelmann, C.: Relationship between powder characteristics and part properties in laser beam melting of Ti–6Al–4V, and implications on quality. J. Laser Appl. 29, 22311 (2017). https://doi.org/10.2351/1.4983240

    Article  Google Scholar 

  5. Chen, G., Zhao, S.Y., Tan, P., Wang, J., Xiang, C.S., Tang, H.P.: A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 333, 38–46 (2018). https://doi.org/10.1016/j.powtec.2018.04.013

    Article  Google Scholar 

  6. Brika, S.E., Letenneur, M., Dion, C.A., Brailovski, V.: Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy, Additive Manufacturing, Volume 31,100929, (2020). https://doi.org/10.1016/j.addma.2019.100929

  7. Padmakumar, M., Dinakaran, D.: A review on cryogenic treatment of tungsten carbide (WC-Co) tool material. Mater. Manuf. Processes. 36(6), 637–659 (2021). DOI: https://doi.org/10.1080/10426914.2020.1843668

    Article  Google Scholar 

  8. Spierings, A.B., Herres, N., Levy, G.: Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp. J. 17(3), 195–202 (2011). https://doi.org/10.1108/13552541111124770

    Article  Google Scholar 

  9. Simchi, A.: The role of particle size on the laser sintering of iron powder. Metall. Mater. Trans. B. 35, 937–948 (2004). https://doi.org/10.1007/s11663-004-0088-3

    Article  Google Scholar 

  10. Padmakumar, M.: Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques. Lasers Manuf. Mater. Process. 7, 338–371 (2020). https://doi.org/10.1007/s40516-020-00124-0

    Article  Google Scholar 

  11. Narasimhan, K.S., Amuda, M.O.H.: Powder Characterization, Reference Module in Materials Science and Materials Engineering, Elsevier, ISBN 9780128035818, (2017). https://doi.org/10.1016/B978-0-12-803581-8.10141-9

  12. Opatová, K., Zetková, I., Kučerová, L.: Relationship between the Size and Inner Structure of Particles of Virgin and Re-Used MS1 Maraging Steel Powder for Additive Manufacturing. Materials. 13, 956 (2020). https://doi.org/10.3390/ma13040956

    Article  Google Scholar 

  13. Andre Mussatto, R., Groarke, A.O.N., Obeidi, M.A., Delaure, Y., Brabazon, D.: Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing, Additive Manufacturing, Volume 38,101807, (2021). https://doi.org/10.1016/j.addma.2020.101807

  14. Vladimir, V., Popov, A.K.-D., Garkun, A., Bamberger, M.: The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4 V specimens, Additive Manufacturing, Volume 22, Pages834–843, (2018). https://doi.org/10.1016/j.addma.2018.06.003

  15. Muñiz-Lerma, J., Nommeots-Nomm, A., Waters, K., Brochu, M.: A Comprehensive Approach to Powder Feedstock Characterization for Powder Bed Fusion Additive Manufacturing: A Case Study on AlSi7Mg, Materials. 112386, (2018). https://doi.org/10.3390/ma11122386

  16. Heaney, D.F.: 3 - Powders for metal injection molding (MIM), Woodhead Publishing Series in Metals and Surface Engineering, Handbook of Metal Injection Molding. Woodhead Publishing. 50–63 (2012). https://doi.org/10.1533/9780857096234.1.50

  17. Deng, X.L., Davé, R.N.: Dynamic simulation of particle packing influenced by size, aspect ratio and surface energy. Granul. Matter. 15, 401–415 (2013). https://doi.org/10.1007/s10035-013-0413-0

    Article  Google Scholar 

  18. Artamonov, V.V., Bykov, A.O., Bykov, P.O., et al.: Measurement of the tap density of metal powders. Powder Metall. Met. Ceram. 52, 237–239 (2013). https://doi.org/10.1007/s11106-013-9518-6

    Article  Google Scholar 

  19. Dai, L., Sorkin, V., Vastola, G., Zhang, Y.W.: Dynamics calibration of particle sandpile packing characteristics via discrete element method. Powder Technol. 347, 220–226 (2019). https://doi.org/10.1016/j.powtec.2019.03.008

    Article  Google Scholar 

  20. Nguyen, Q.B., Nai, M.L.S., Zhu, Z., Sun, C.-N., Wei, J., Zhou, W.: Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing, Engineering, Volume 3, Issue 5, Pages 695–700, (2017). https://doi.org/10.1016/J.ENG.2017.05.012

  21. Vo, T.T., Nezamabadi, S., Mutabaruka, P., et al.: Additive rheology of complex granular flows. Nat. Commun. 11, 1476 (2020). https://doi.org/10.1038/s41467-020-15263-3

    Article  Google Scholar 

  22. Lewis, T.B., Nielsen, L.E.: Viscosity of dispersed and aggregated suspensions of spheres, Transactions of the Society of Rheology, Volume 12, Issue 3, Pages421–443, (1968). https://doi.org/10.1122/1.549114

  23. Pavan Suri, S.V., Atre, R.M., German, Jupiter, P., de Souza: Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock, Materials Science and Engineering: A, Volume 356, Issues 1–2, 2003, Pages337–344, https://doi.org/10.1016/S0921-5093(03)00146-1

  24. Strondl, A., Lyckfeldt, O., Brodin, H., et al.: Characterization and Control of Powder Properties for Additive Manufacturing. JOM. 67, 549–554 (2015). https://doi.org/10.1007/s11837-015-1304-0

    Article  Google Scholar 

  25. Olakanmi, E.O.: Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol. 213, 1387–1405 (2013). https://doi.org/10.1016/j.jmatprotec.2013.03.009

    Article  Google Scholar 

  26. Fouda, Y.M., Bayly, A.E.: A DEM study of powder spreading in additive layer manufacturing. Granul. Matter. 22, 10 (2020). https://doi.org/10.1007/s10035-019-0971-x

    Article  Google Scholar 

  27. Parnian Kiani, U.S., Bertoli, A.D., Dupuy, K., Ma, J.M., Schoenung: A Statistical Analysis of Powder Flowability in Metal Additive Manufacturing, Volume 22, Issue 10, (2020). https://doi.org/10.1002/adem.202000022

  28. Lüddecke, A., Pannitz, O., Zetzener, H., Sehrt, J.T., Kwade, A.: Powder properties and flowability measurements of tailored nanocomposites for powder bed fusion applications. Mater. Design. 202, 109536 (2021). https://doi.org/10.1016/j.matdes.2021.109536

    Article  Google Scholar 

  29. Liu, B., Wildman, R., Tuck, C., Ashcroft, I., Hague, R.: Investigation the Effect of Particle Size Distribution on Processing Parameters Optimisation in Selective Laser Melting Process, pp. 227–238. Additive Manufacturing Research Group, Loughborough University (2011)

    Google Scholar 

  30. Zegzulka, J., Gelnar, D., Jezerska, L., et al.: Characterization and flowability methods for metal powders. Sci. Rep. 10, 21004 (2020). https://doi.org/10.1038/s41598-020-77974-3

    Article  Google Scholar 

  31. Suzana Caetano da Silva Lannes and Maria Elena Del Dolores Bernal Gómez (January: 24th, Powder Technology, Food Processing, Romina Alina Marc, Antonio Valero Díaz and Guiomar Denisse Posada Izquierdo, IntechOpen, DOI: (2020). https://doi.org/10.5772/intechopen.90715

  32. Seyda, V., Herzog, D.: Emmelmann Relationship between powder characteristics and part properties in laser beam melting of Ti–6Al–4V, and implications on quality. J. Laser Appl. 29, 22311 (2017). https://doi.org/10.2351/1.4983240

    Article  Google Scholar 

  33. Rustam Baitimerov, P., Lykov, D., Zherebtsov, L., Radionova, Alexey Shultc and Konda Gokuldoss Prashanth, Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting,Materials 2018, 11(5),742; https://doi.org/10.3390/ma11050742

  34. Haferkamp, L., Haudenschild, L., Spierings, A., et al.: The Influence of Particle Shape, Powder Flowability, and Powder Layer Density on Part Density in Laser Powder Bed Fusion. Metals. 11(3), 418 (2021). https://doi.org/10.3390/met11030418

    Article  Google Scholar 

  35. Tomas, J., Kleinschmidt, S.: Improvement of Flowability of Fine Cohesive Powders by Flow Additives. Chem. Eng. Technol. 32(10), 1470–1483 (2009). https://doi.org/10.1002/ceat.200900173

    Article  Google Scholar 

  36. Tomas, J., Kleinschmidt, S.: Improvement of Flowability of Fine Cohesive Powders by Flow Additives. Chem. Eng. Technol. 32, 1470–1483 (2009). https://doi.org/10.1002/ceat.200900173

    Article  Google Scholar 

  37. Lorenzo Marchetti, C., Hulme-Smith, Flowability of steel and tool steel powders: A comparison between testing methods, Powder Technology, Volume 384, Pages402–413, (2021). https://doi.org/10.1016/j.powtec.2021.01.074

  38. Dai, L., Chan, Y.R., Vastola, G., Khan, N., Raghavan, S., Zhang, Y.W.: Characterizing the intrinsic properties of powder – A combined discrete element analysis and Hall flowmeter testing study. Adv. Powder Technol. 32(1), 80–87 (2021). https://doi.org/10.1016/j.apt.2020.11.015

    Article  Google Scholar 

  39. Haim, Kalman: Quantification of mechanisms governing the angle of repose, angle of tilting, and Hausner ratio to estimate the flowability of particulate materials. Powder Technol. 382, 573–593 (2021). https://doi.org/10.1016/j.powtec.2021.01.012

    Article  Google Scholar 

  40. Cheng, N.S.: Angle of Repose. In: Bobrowsky, P.T., Marker, B. (eds.) Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73568-9_15

    Chapter  Google Scholar 

  41. White paper on: “Using a Granular Material Heap Analyzer for Small Dose Analysis”, Granutools, 11 https://www.news-medical.net/whitepaper/20190911/Using-a-Granular-Material-Heap-Analyzer-for-Small-Dose-Analysis.aspx, (2019). accessed on 8 Oct 2021.

  42. Michal Šimek, V., Grünwaldová, B., Kratochvíl, Comparison of Compression and Material Properties of Differently Shaped and Sized Paracetamols, KONA Powder and Particle Journal, Volume 34, Pages197–206, (2017). https://doi.org/10.14356/kona.2017003

  43. Cheng, N.-S., Zhao, K.: Difference between static and dynamic angle of repose of uniform sediment grains. Int. J. Sediment Res. Volume. 32(2), 149–154 (2017). https://doi.org/10.1016/j.ijsrc.2016.09.001

    Article  Google Scholar 

  44. Han, M., Zhou, Y., Zhu, J., Improvement on flowability and fluidization of Group C particles after nanoparticle modification, Powder Technology, Volume 365, Pages208–214, (2020). https://doi.org/10.1016/j.powtec.2019.07.026

  45. Kleinhans, M.G., Markies, H., de Vet, S.J., A.C. in ‘t Veld, Postema, F.N., Static and dynamic angles of repose in loose granular materials under reduced gravity, J. Geophys. Res., 116 Article E11004, (2011). https://doi.org/10.1029/2011JE003865

  46. Hamzah, M. Beakawi Al-Hashemi, O.S., Baghabra Al-Amoudi, A review on the angle of repose of granular materials, Powder Technology, Volume 330, Pages397–417, (2018). https://doi.org/10.1016/j.powtec.2018.02.003

  47. Bodea, M., Jumate, N., M.Danca, Characterization of the powder particles shapes and properties using the fractal theory, Third International Conference on Powder Metallurgy, Sinaia, Romania, (2005)

  48. Mandelbrot, B.B. The fractal geometry of nature,Science, Volume 155, Issue 6, Pages636–638

  49. Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. Freeman, San Francisco, W.H. Freeman, (1977)

    MATH  Google Scholar 

  50. Pierre Lebrun, F., Krier, et al.: Design space approach in the optimization of the spray-drying process. Eur. J. Pharm. Biopharm. 80(1), 226–234 (2012). https://doi.org/10.1016/j.ejpb.2011.09.014

    Article  Google Scholar 

  51. European Pharmacopoeia Commission:, Flow, P., Pharmacopoeia, E., (7.1th edition), Council of Europe, Strasbourg (2011)

  52. Averardi, A., Cola, C., Zeltmann, S.E., Gupta, N.: Effect of particle size distribution on the packing of powder beds: A critical discussion relevant to additive manufacturing. Mater. Today Commun. 24, 100964 (2020). https://doi.org/10.1016/j.mtcomm.2020.100964

    Article  Google Scholar 

  53. Sutton, A.T., et al., “Powders for Additive Manufacturing Processes: Characterization Techniques and Effects on Part Properties,“ Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium Austin, TX), pp. 1004–1030, University of Texas at Austin, Aug 2016. (2016)

  54. Niu, H.J., Chang, I.T.H., Selective laser sintering of gas and water atomized high speed steel powders, Scripta Materialia, Volume 41, Issue 1, Pages25–30, (1999). https://doi.org/10.1016/S1359-6462(99)00089-5

  55. Miyanaji, H., Momenzadeh, N., Yang, L.: “Effect of powder characteristics on parts fabricated via binder jetting process”. Rapid Prototyp. J. 25, 332–342 (2019). https://doi.org/10.1108/RPJ-03-2018-0069

    Article  Google Scholar 

  56. Abd-Elghany, K., Bourell, D.L.: “Property evaluation of 304L stainless steel fabricated by selective laser melting”. Rapid Prototyp. J. 18(5), 420–428 (2012). https://doi.org/10.1108/13552541211250418

    Article  Google Scholar 

  57. Mostafaei, A., Vecchis, P.R.D., Nettleship, I., Chmielus, M., Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625, Materials & Design, Volume 162, 2019, Pages375–383, https://doi.org/10.1016/j.matdes.2018.11.051

  58. Lutter-Günther, M., Horn, M., Seidel, C., Reinhart, G., Influence of particle size distribution on powder flowability and part properties in laser beam melting, Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, Jun (2017). https://doi.org/10.3139/9783446454606.022

  59. Carl, Levoguer, Using laser diffraction to measure particle size and distribution, Metal Powder Report, Volume 68, Issue 3, Pages15–18, (2013). https://doi.org/10.1016/S0026-0657(13)70090-0

  60. Cornelia, M., Keck, Rainer, H., Müller, Size analysis of submicron particles by laser diffractometry—90% of the published measurements are false, International Journal of Pharmaceutics, Volume 355, Issues 1–2, 2008, Pages 150–163, https://doi.org/10.1016/j.ijpharm.2007.12.004

  61. Starr, T.L., Rafi, K., Stucker, B., Scherzer, C.M. 439–446. (2012)

  62. Lawrence, E., Murr, E., Martinez, J., Hernandez, S., Collins, K.N., Amato, S.M., Gaytan, P.W., Shindo: Microstructures and Properties of 17 – 4 PH Stainless Steel Fabricated by Selective Laser Melting. J. Mater. Res. echnology. 1(3), 167–177 (2012). https://doi.org/10.1016/S2238-7854(12)70029-7

    Article  Google Scholar 

  63. Ding, Y., Muñiz-Lerma, J., Trask, M., Chou, S., Walker, A., Brochu, M.: Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bull. 41(10), 745–751 (2016). doi:https://doi.org/10.1557/mrs.2016.214

    Article  Google Scholar 

  64. Slotwinski, J.A., Garboczi, E.J.: Metrology Needs for Metal Additive Manufacturing Powders. JOM. 67, 538–543 (2015). https://doi.org/10.1007/s11837-014-1290-7

    Article  Google Scholar 

  65. Haider Ali, L., Ma, H., Ghadbeigi: Kamran Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Engineering: A. 695, 211–220 (2017). https://doi.org/10.1016/j.msea.2017.04.033

    Article  Google Scholar 

  66. Xing, L.-L., Zhang, W.-J., Zhao, C.-C., Gao, W.-Q., Shen, Z.-J., Liu, W.: Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion. Materials. 14, 2278 (2021). https://doi.org/10.3390/ma14092278

    Article  Google Scholar 

  67. Dongdong Gu, W., Meiners, Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting, Materials Science and Engineering: A, Volume 527, Issues 29–30, 2010, Pages 7585–7592, https://doi.org/10.1016/j.msea.2010.08.075

  68. Eckart Uhlmann, A., Bergmann, Witalij Gridin, Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting, Procedia CIRP, Volume 35, Pages 8–15, (2015). https://doi.org/10.1016/j.procir.2015.08.060

  69. Alexey, D., András, B., Igor, S.: Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting. Mater. Manuf. Processes. 32, 93–100 (2017). https://doi.org/10.1080/10426914.2016.1176195

    Article  Google Scholar 

  70. Haber, J.: Manual on catalyst characterization. Pure Appl. Chem. 63(9), 1227–1246 (1991). https://doi.org/10.1351/pac199163091227

    Article  Google Scholar 

  71. Ghods, S., Schur, R., Schultz, E., Pahuja, R., Montelione, A., Wisdom, C., Arola, D., Ramulu, M., Powder reuse and its contribution to porosity in additive manufacturing of Ti6Al4V, Materialia, Volume 15,100992, (2021). https://doi.org/10.1016/j.mtla.2020.100992

  72. Heim, K., Bernier, F., Pelletier, R., Lefebvre, L.-P., High resolution pore size analysis in metallic powders by X-ray tomography, Case Studies in Nondestructive Testing and Evaluation, Volume 6, Part A, Pages 45–52, (2016). https://doi.org/10.1016/j.csndt.2016.09.002

  73. Tang, H.P., Qian, M., Liu, N., Zhang, X.Z., Yang, G.Y., Wang, J.: Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. JOM. 67, 555–563 (2015). https://doi.org/10.1007/s11837-015-1300-4

    Article  Google Scholar 

  74. Padmakumar Muthuswamy and Vijaya Ganesa Velan Murugesan:, Machinability analysis in high speed turning of Ti–6Al–4V alloy and investigation of wear mechanism in AlTiN PVD coated tungsten carbide tool, Engineering Research Express, Volume 3, Number 4, 045011, https://doi.org/10.1088/2631-8695/ac2e12

  75. Sun, Y., Aindow, M., Hebert, R.J.: The effect of recycling on the oxygen distribution in Ti-6Al-4V powder for additive manufacturing. Mater. High Temp. 35, 217–224 (2018). https://doi.org/10.1080/09603409.2017.1389133

    Article  Google Scholar 

  76. Mohammadhosseini, A., Fraser, D., Masood, S.H., Jahedi, M.: A study of morphology of titanium powder used in electron beam melting Appl. Mech. Mater. 541–542 (2014). https://doi.org/10.4028/www.scientific.net/AMM.541-542.160

  77. Nandwana, P., Peter, W.H., Dehoff, R.R., et al.: Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting. Metall. Mater. Trans. B. 47, 754–762 (2016). https://doi.org/10.1007/s11663-015-0477-9

    Article  Google Scholar 

  78. Velasco-Castro, M., Hernández-Nava, E., Figueroa, I.A., Todd, I., Goodall, R., The effect of oxygen pickup during selective laser melting on the microstructure and mechanical properties of Ti–6Al–4V lattices, Heliyon, Volume 5, Issue 12,e02813, (2019). https://doi.org/10.1016/j.heliyon.2019.e02813

  79. Sujana Chandrasekar, J.B., Coble, S., Yoder, P., Nandwana, R.R., Dehoff, V.C., Paquit, Sudarsanam, S., Babu, Investigating the effect of metal powder recycling in Electron beam Powder Bed Fusion using process log data, Additive Manufacturing, Volume 32,100994, (2020). https://doi.org/10.1016/j.addma.2019.100994

  80. Pouya Moghimian, T., Poirié, M., Habibnejad-Korayem, et al.,Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys, Additive Manufacturing, Volume 43,102017, (2021). https://doi.org/10.1016/j.addma.2021.102017

  81. Seyda, V., Kaufmann, N., Emmelmann, C., Investigation of Aging Processes of Ti-6Al-4 V Powder Material in Laser Melting, Physics Procedia, Volume 39, Pages425–431, (2012). https://doi.org/10.1016/j.phpro.2012.10.057

  82. Hamed Asgari, C., Baxter, K., Hosseinkhani, M., Mohammadi: On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. Mater. Sci. Engineering: A. 707, 148–158 (2017). https://doi.org/10.1016/j.msea.2017.09.041

    Article  Google Scholar 

  83. Zhao, H., Niu, W., Zhang, B., Lei, Y., Kodama, M., Ishide, T., Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding, Journal of Physics D: Applied Physics, Volume 44, Number 48, (2011). https://doi.org/10.1088/0022-3727/44/48/485302

  84. Lutter-Günther, M., Bröker, M., Mayer, T., Lizak, S., Seidel, C., Reinhart, G., Spatter formation during laser beam melting of AlSi10Mg and effects on powder quality, Procedia CIRP, Volume 74, Pages33–38, (2018). https://doi.org/10.1016/j.procir.2018.08.008

  85. Usman Ali, R., Esmaeilizadeh, F., Ahmed, et al.: Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17 – 4 PH stainless steel laser powder-bed fusion parts. Mater. Sci. Engineering: A. 756, 98–107 (2019). https://doi.org/10.1016/j.msea.2019.04.026

    Article  Google Scholar 

  86. Ahmed, F., Ali, U., et al.: Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17 – 4 PH stainless steel. J. Mater. Process. Technol. 278, 116522 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116522

    Article  Google Scholar 

  87. Cordova, L., Bor, T., et al., Effects of powder reuse on the microstructure and mechanical behaviour of Al–Mg–Sc–Zr alloy processed by laser powder bed fusion (LPBF), Additive Manufacturing, Vol. 36,101625, (2020). https://doi.org/10.1016/j.addma.2020.101625

  88. Daniel Powell, Allan, E.W., Rennie, L., Geekie, N., Burns: Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders. J. Clean. Prod. 268, 122077 (2020). https://doi.org/10.1016/j.jclepro.2020.122077

    Article  Google Scholar 

  89. Mirzababaei, S., Paul, B.K., Pasebani, S.: Metal Powder Recyclability in Binder Jet Additive Manufacturing. JOM. 72, 3070–3079 (2020). https://doi.org/10.1007/s11837-020-04258-6

    Article  Google Scholar 

  90. Influence of Powder Recycling Rate on Metal Additive Manufacturing:, https://www.eplus3d.com/Company-News/article_153, accessed on 8 Oct 2021.

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmakumar Muthuswamy.

Ethics declarations

Conflict of interest/Competing interests

The author has no competing interests to declare that are relevant to the content of this article.

Disclaimer

This disclaimer informs readers that the views, thoughts, and opinions expressed in the article belong solely to the author, and they do not purport to reflect the opinions, views, policies, or positions of author’s employer, affiliates, organization, committee, or other group or individual.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuswamy, P. Influence of powder characteristics on properties of parts manufactured by metal additive manufacturing. Lasers Manuf. Mater. Process. 9, 312–337 (2022). https://doi.org/10.1007/s40516-022-00177-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00177-3

Keywords

Navigation