Skip to main content
Log in

A Generalised Approach on Kerf Geometry Prediction during CO2 Laser cut of PMMA Thin Plates using Neural Networks

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

This study presents an application of feedforward and backpropagation neural network (FFBP-NN) for predicting the kerf characteristics, i.e. the kerf width in three different distances from the surface (upper, middle and down) and kerf angle during laser cutting of 4 mm PMMA (polymethyl methacrylate) thin plates. Stand-off distance (SoD: 7, 8 and 9 mm), cutting speed (CS: 8, 13 and 18 mm/sec) and laser power (LP: 82.5, 90 and 97.5 W) are the studied parameters for low power CO2 laser cutting. A three-parameter three-level full factorial array has been used, and twenty-seven (33) cuts are performed. Subsequently, the upper, middle and down kerf widths (Wu, Wm and Wd) and the kerf angle (KA) were measured and analysed through ANOM (analysis of means), ANOVA (analysis of variances) and interaction plots. The statistical analysis highlighted that linear modelling is insufficient for the precise prediction of kerf characteristics. An FFBP-NN was developed, trained, validated and generalised for the accurate prediction of the kerf geometry. The FFBP-NN achieved an R-all value of 0.98, in contrast to the ANOVA linear models, which achieved Rsq values of about 0.86. According to the ANOM plots, the parameter values which optimize the KA resulting in positive values close to zero degrees were the 7 mm SoD, 8 mm/s CS and 97.5 W LP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the [Research Square] repository, [https://www.researchsquare.com/article/rs-268745/v1].

References

  1. Davim, J.P., Barricas, N., Conceicao, M., Oliveira, C.: Some experimental studies on CO2 laser cutting quality of polymeric materials. J. Mater. Process. Technol. 198(1–3), 99–104 (2008)

    Article  Google Scholar 

  2. Mushtaq, R.T., Wang, Y., Rehman, M., Khan, A.M., Mia, M.: State-of-the-art and trends in CO2 laser cutting of polymeric materials—a review. Materials 13(17), 3839 (2020)

    Article  Google Scholar 

  3. Romoli, L., Tantussi, G., Dini, G.: Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Opt. Lasers Eng. 49(3), 419–427 (2011)

    Article  Google Scholar 

  4. Muangpool T, Pullteap S Reviews on laser cutting technology for industrial applications. In: Third International Conference on Photonics Solutions (ICPS2017), 2018. International Society for Optics and Photonics, p 107140Q

  5. Haddadi, E., Moradi, M., Karimzad Ghavidel, A., Karimzad Ghavidel, A., Meiabadi, S.: Experimental and parametric evaluation of cut quality characteristics in CO2 laser cutting of polystyrene. Optik 184, 103–114 (2019). https://doi.org/10.1016/j.ijleo.2019.03.040

    Article  Google Scholar 

  6. Moradi M, Abdollahi H (2017) Statistical modelling and optimization of the laser percussion microdrilling of thin sheet stainless steel. J. lasers Eng.

  7. Chryssolouris G (2013) Laser machining: theory and practice. Springer Science & Business Media

  8. Stournaras, A., Stavropoulos, P., Salonitis, K., Chryssolouris, G.: An investigation of quality in CO2 laser cutting of aluminum. CIRP J. Manuf. Sci. Technol. 2(1), 61–69 (2009)

    Article  Google Scholar 

  9. Zhou, B.H., Mahdavian, S.: Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser. J. Mater. Process. Technol. 146(2), 188–192 (2004)

    Article  Google Scholar 

  10. Moradi, M., Mehrabi, O., Azdast, T., Benyounis, K.Y.: Enhancement of low power CO2 laser cutting process for injection molded polycarbonate. Opt. Laser Technol. 96, 208–218 (2017)

    Article  Google Scholar 

  11. Tamrin, K., Nukman, Y., Choudhury, I., Shirley, S.: Multiple-objective optimization in precision laser cutting of different thermoplastics. Opt. Lasers Eng. 67, 57–65 (2015)

    Article  Google Scholar 

  12. Cardoso, R.M., Santos, ROd., Munoz, R.A., Garcia, C.D., Blanes, L.: A multi-pump magnetohydrodynamics lab-on-a-chip device for automated flow control and analyte delivery. Sensors 20(17), 4909 (2020)

    Article  Google Scholar 

  13. Conzelmann, J., Schwarz, F.B., Hamm, B., Scheel, M., Jahnke, P.: Development of a method to create uniform phantoms for task-based assessment of CT image quality. J. Appl. Clin. Med. Phys. 21(9), 201–208 (2020)

    Article  Google Scholar 

  14. Sen, A., Doloi, B., Bhattacharyya, B.: Parametric influences of fiber laser micro-machining for the generation of micro-channels on PMMA. J. Braz. Soc. Mech. Sci. Eng. 42(8), 1–13 (2020)

    Article  Google Scholar 

  15. Lubis, L., Hariyati, I., Ryangga, D., Mu’minah, I., Mart, T., Soejoko, D.: Construction and evaluation of a multipurpose performance check phantom for computed tomography. Atom Indonesia 46(2), 69–75 (2020)

    Article  Google Scholar 

  16. Çaydaş, U., Hasçalık, A.: Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics. Opt. Laser Technol. 40(7), 987–994 (2008)

    Article  Google Scholar 

  17. Hossain, A., Hossain, A., Nukman, Y., Hassan, M., Harizam, M., Sifullah, A., Parandoush, P.: A fuzzy logic-based prediction model for kerf width in laser beam machining. Mater. Manuf. Processes 31(5), 679–684 (2016)

    Article  Google Scholar 

  18. Varsi, A.M., Shaikh, A.H.: Experimental and statistical study on kerf taper angle during CO2 laser cutting of thermoplastic material. J. Laser Appl. 31(3), 032010 (2019)

    Article  Google Scholar 

  19. Davim, J.P., Oliveira, C., Barricas, N., Conceição, M.: Evaluation of cutting quality of PMMA using CO 2 lasers. Int. J. Adv. Manuf. Technol. 35(9–10), 875–879 (2008)

    Article  Google Scholar 

  20. Nayak, N.C., Lam, Y., Yue, C., Sinha, A.T.: CO2-laser micromachining of PMMA: the effect of polymer molecular weight. J. Micromechan. Microeng. 18(9), 095020 (2008)

    Article  Google Scholar 

  21. Caiazzo, F., Curcio, F., Daurelio, G., Minutolo, F.M.C.: Laser cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser beam. J. Mater. Process. Technol. 159(3), 279–285 (2005)

    Article  Google Scholar 

  22. Karagiannis, S., Stavropoulos, P., Ziogas, C., Kechagias, J.: Prediction of surface roughness magnitude in computer numerical controlled end milling processes using neural networks, by considering a set of influence parameters: an aluminium alloy 5083 case study. Proc. Inst. Mech. Engineers, Part B: J. Eng. Manuf. 228(2), 233–244 (2014)

    Article  Google Scholar 

  23. Choudhury, I.A., Shirley, S.: Laser cutting of polymeric materials: an experimental investigation. Opt. Laser Technol. 42(3), 503–508 (2010)

    Article  Google Scholar 

  24. Nukman, Y., Hassan, M., Harizam, M.: Optimization of prediction error in CO2 laser cutting process by Taguchi artificial neural network hybrid with genetic algorithm. Appl. Math. Inf. Sci. 7(1), 363–370 (2013)

    Article  Google Scholar 

  25. Moradi M, Moghadam MK, Shamsborhan M, Beiranvand ZM, Rasouli A, Vahdati M, Bakhtiari A, Bodaghi M (2020) Simulation, statistical modeling, and optimization of CO2 laser cutting process of polycarbonate sheets. Optik:164932

  26. Elsheikh, A.H., Deng, W., Showaib, E.A.: Improving laser cutting quality of polymethylmethacrylate sheet: experimental investigation and optimization. J. Market. Res. 9(2), 1325–1339 (2020)

    Google Scholar 

  27. Atanasov P, Baeva M (1997) CW CO2 laser cutting of plastics, vol 3092. XI International Symposium on Gas Flow and Chemical Lasers and High Power Laser Conference. SPIE

  28. Karagiannis S, Ispoglou T, Stavropoulos P, Kechagias J Multi parameter optimization using Taguchi L8 (27) Array-A case study on additive paper lamination process. In: Proceedings of the 1st International Conference on Mathematical Methods & Computational Techniques in Science & Engineering, MMCTSE 2014, Athens, Gr, 2014. pp 110–113

  29. Kechagias JD, Ninikas K, Petousis M, Vidakis N, Vaxevanidis N (2021) An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Mater. Manuf. Processes. Doi: https://doi.org/10.1080/10426914.2021.1906892

  30. Kechagias J, Stavropoulos P, Koutsomichalis A, Ntintakis I, Vaxevanidis N (2014) Dimensional accuracy optimization of prototypes produced by PolyJet direct 3D printing technology. Advances in Engineering Mechanics and Materials:61–65

  31. Stavropoulos P, Salonitis K, Stournaras A, Pandremenos J, Paralikas J, Chryssolouris G Experimental investigation of micro-milling process quality. In: 40th CIRP International Seminar on Manufacturing Systems, Liverpool, 2007

  32. Anon (2020) bodor. www.bodor.com/en/. Accessed 18/09/2020

  33. Anon (2020) rdworks. https://rdworks.software.informer.com/8.0/. Accessed 18/09/2020

  34. Anon (2020) irishelectronics. https://irishelectronics.ie/WebRoot/Register365/Shops/950018241/5CBE/ED52/5AF1/8897/B735/C0A8/190E/F401/Digital_Microscope_General_Instruction.pdf Accessed 28/09/2020

  35. Kechagias, J.D., Aslani, K.-E., Fountas, N.A., Vaxevanidis, N.M., Manolakos, D.E.: A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy. Measurement 151, 107213 (2020)

    Article  Google Scholar 

  36. Ninikas, K., Kechagias, J., Salonitis, K.: The impact of process parameters on surface roughness and dimensional accuracy during CO2 laser cutting of PMMA thin sheets. J. Manuf. Mater. Process. 5(3), 74 (2021)

    Google Scholar 

  37. Phadke MS (1995) Quality engineering using robust design. Prentice Hall PTR,

  38. Omidvar, M., Fard, R.K., Sohrabpoor, H., Teimouri, R.: Selection of laser bending process parameters for maximal deformation angle through neural network and teaching–learning-based optimization algorithm. Soft. Comput. 19(3), 609–620 (2015)

    Article  Google Scholar 

  39. Kim, K.S., Choi, H.H., Moon, C.S., Mun, C.W.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11(3), 740–745 (2011)

    Article  Google Scholar 

  40. Vidakis, N., Petousis, M., Vaxevanidis, N., Kechagias, J.: Surface roughness investigation of poly-jet 3D printing. Mathematics 8(10), 1758 (2020)

    Article  Google Scholar 

  41. Kechagias J, Tsiolikas A, Asteris P, Vaxevanidis N Optimizing ANN performance using DOE: application on turning of a titanium alloy. In: MATEC Web of Conferences, 2018. EDP Sciences, p 01017

  42. Kechagias, J., Iakovakis, V.: A neural network solution for LOM process performance. Int. J. Adv. Manuf. Technol. 43(11–12), 1214–1222 (2009)

    Article  Google Scholar 

  43. Žic, M., Subotić, V., Pereverzyev, S., Fajfar, I.: Solving CNLS problems using Levenberg-Marquardt algorithm: A new fitting strategy combining limits and a symbolic Jacobian matrix. J. Electroanalyt. Chem. 866, 114171 (2020)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.K. and K.N.; methodology, J.K. and K.N; software, J.K., P.S and K.S; validation, J.K. and P.S.; formal analysis K.N.; investigation, K.N.; resources, J.K.; writing—original draft preparation, J.K., K.N. P.S. and K.S.; review and editing, J.K., K.N, P.S. and K.S.; supperervision, J.K.; project administration, J.K.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to John D. Kechagias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Highlights

• Application of FFBP-NN to predict kerf geometry during laser cutting of PMMA thin plates

• Robust design using full orthogonal experimental arrays

• Accurate predictions of kerf widths and kerf angle

• Map min-max method is adopted for data normalization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kechagias, J.D., Ninikas, K., Stavropoulos, P. et al. A Generalised Approach on Kerf Geometry Prediction during CO2 Laser cut of PMMA Thin Plates using Neural Networks. Lasers Manuf. Mater. Process. 8, 372–393 (2021). https://doi.org/10.1007/s40516-021-00152-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-021-00152-4

Keywords

Navigation