Skip to main content

Advertisement

Log in

Effect of laser shock peening on the microstructure, tensile and heat transport properties of Alloy D9

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Present work investigates the effect of laser shock peening on the microstructure and properties of alloy D9, a candidate material for the core applications in fast breeder reactors. For select peening parameter, surface and depth distribution of residual compressive stresses, microstructure, hardness, tensile properties and thermal diffusivity have been compared with a reference (annealed) material. After shock peening, using laser energy of 3J/pulse, compressive stresses were present up to a depth of 360 μm from the surface with a maximum magnitude of 330 MPa at a depth of 20-30 μm from the surface. Though the microstructure showed no appreciable change, both hardness and yield strength increased (by 32% and 63% respectively) and ductility decreased after peening. Mechanical property evaluation using miniaturized tensile testing gave a truly quantitative estimate of the change in properties due to peening. Change in thermal diffusivity measured from ambient temperature up to 700 °C suggested the superior thermal stability of laser shock peened specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. Jiang, X.P., Man, C.S., Shepard, M.J., Zhai, T.: Effects of shot-peening and re-shot-peening on four-point bend fatigue behavior of Ti–6Al–4V. Mater. Sci. Eng. A. 468–470, 137–143 (2007)

    Google Scholar 

  2. Efim, S.: Statnikov, Oleg V. Korolkov, Vladimir N. Vityazev.: Physics and mechanism of ultrasonic impact. Ultrasonics. 44, e533–e538 (2006)

    Google Scholar 

  3. Prevey, P.S., Cammett, J.T.: The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int. J. Fatigue. 26, 975–982 (2004)

    Google Scholar 

  4. Anand Kumar, S., Sundar, R., Ganesh Sundar Raman, S., Gnanamoorthy, R., Kaul, R., Ranganathan, K., Bindra, K.S.: Effects of laser peening on fretting wear behavior of alloy 718 fretted against two different counter body materials. J. Eng. Tribology. 231, 1276–1288 (2017)

    Google Scholar 

  5. Sundar, R., Ganesh, P., Sunil Kumar, B., Gupta, R.K., Nagpure, D.C., Kaul, R., Ranganathan, K., Bindra, K.S., Kain, V., Oak, S.M., Singh, B.: Mitigation of stress corrosion cracking susceptibility of machined 304L stainless steel through laser peening. J. Mater. Eng. Perf. 25, 3710–3724 (2016)

    Google Scholar 

  6. Gupta, R.K., Sunil Kumar, B., Sundar, R., Ram Sankar, P., Ganesh, P., Kaul, R., Kain, V., Ranganathan, K., Bindra, K.S., Singh, B.: Enhancement of intergranular corrosion resistance of type 304 stainless steel through laser shock peening. Corr. Eng. Sci. Tech. 52, 220–225 (2017)

    Google Scholar 

  7. Montross, C.S., Wei, T., Lin, Y., Clark, G., Mai, Y.-W.: Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int. J. Fatigue. 24, 1021–1036 (2002)

    Google Scholar 

  8. Ganesh, P., Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Hedaoo, P., Tiwari, P., Kukreja, L.M., Oak, S.M., Dasari, S., Ragvendra, G.: Studies of laser peening on spring steel for automotive applications. Opt. Lasers Eng. 50, 678–686 (2012)

    Google Scholar 

  9. Ganesh, P., Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Hedaoo, P., Ragvendra, G., Anand Kumar, S., Tiwari, P., Nagpure, D.C., Bindra, K.S., Kukreja, L.M., Oak, S.M.: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening. Mater. Des. 54, 734–741 (2014)

    Google Scholar 

  10. Peyre, P.: Berthe. L., Scherpereel, X., Fabbro, R., Bartnicki. E.: Experimental study of laser-driven shock waves in stainless steels. J. Appl. Phys. 84, 5985–5992 (1998)

    Google Scholar 

  11. Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., BeÂranger, G., Lemaitre, C.: Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater. Sci. Eng. A. 280, 294–302 (2000)

    Google Scholar 

  12. Peyre, P., Fabbro, R., Merrien, P., Lieurade, H.P.: Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior. Mater. Sci. Eng. A. 210, 102–113 (1996)

    Google Scholar 

  13. Hongchao, Q., Jibin, Z., Gongxuan, Z., Yu, G.: Effects of laser shock peening on microstructure and residual stress evolution in Ti-45Al-2Cr-2Nb-0.2B alloy. Surf. Coat. Technol. 276, 145–151 (2015)

    Google Scholar 

  14. Chen, L., Ren, X., Zhou, W., Tong, Z., Adu-Gyamfi, S., Ye, Y., Ren, Y.: Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening. Mater. Sci. Eng. A. 728, 20–29 (2018)

    Google Scholar 

  15. Saklakoglu, N., Irizalp, S.G., Akman, E., Demir, A.: Near surface modification of aluminum alloy induced by laser shock processing. Opt. Laser Technol. 64, 235–241 (2014)

    Google Scholar 

  16. Pant, B.K., Sundar, R., Kumar, H., Kaul, R., Pavan, A.H.V., Ranganathan, K., Bindra, K.S., Oak, S.M., Kukreja, L.M., Prakash, R., Kamaraj, M.: Studies towards development of laser peening technology for martensitic stainless steel and titanium alloys for steam turbine applications. Mater. Sci. Eng. A. 587, 352–358 (2013)

    Google Scholar 

  17. Irizalp, S.G., Saklakoglu, N.: High strength and high ductility behavior of 6061-T6 alloy after laser shock processing. Opt. Lasers Eng. 77, 183–190 (2016)

    Google Scholar 

  18. Tong, Z., Ren, X., Ren, Y., Dai, F., Ye, Y., Zhou, W., Chen, L., Ye, Z.: Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy. Surf. Coat. Technol. 355, 32–40 (2018)

    Google Scholar 

  19. Hongchao, Q.: Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications. Appl. Surf. Sci. 351, 524–530 (2015)

    Google Scholar 

  20. Salimianrizi, A., Foroozmehr, E., Badrossamay, M., Farrokhpour, H.: Effect of laser shock peening on surface properties and residual stress of Al 6061-T6. Opt. Lasers Eng. 77, 112–117 (2016)

    Google Scholar 

  21. Shadangi, Y., Chattopadhyay, K., Rai, S.B., Singh, V.: Effect of laser shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel. Surf. Coat. Technol. 280, 216–224 (2015)

    Google Scholar 

  22. Zhou, L., He, W., Luo, S., Long, C., Cheng, W., Nie, X., He, G., Shen, X.J., Li, Y.: Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel. J. Alloys Compd. 655, 66–70 (2016)

    Google Scholar 

  23. Luo, K.Y., Lu, J.Z., Zhang, Y.K., Zhou, J.Z., Zhang, L.F., Dai, F.Z., Zhang, L., Zhong, J.W., Cui, C.Y.: Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel. Mater. Sci. Eng. A. 528, 4783–4788 (2011)

    Google Scholar 

  24. Lim, H., Lee, M., Kim, P., Jeong, S.: Laser shock peening of AISI 304 stainless steel for the application to seawater desalination pump components. Desalin. Water Treat. 33, 255–260 (2011)

    Google Scholar 

  25. Huang, S., Yuan, G., Sheng, J., Tan, W., Agyenim-Boateng, E., Zhou, J., Guo, H.: Strengthening mechanism and hydrogen-induced crack resistance of AISI 316L stainless steel subjected to laser peening at different power densities. Int. J. Hydrogen Energy. 43, 11263–11274 (2018)

    Google Scholar 

  26. Rai, A.K., Biswal, R., Gupta, R.K., Singh, R., Rai, S.K., Ranganathan, K., Ganesh, P., Kaul, R., Bindra, K.S.: Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel. Surf. Coat. Technol. 358, 125–135 (2019)

    Google Scholar 

  27. Rai, A.K., Biswal, R., Gupta, R.K., Rai, S.K., Singh, R., Goutam, U.K., Ranganathan, K., Ganesh, P., Kaul, R., Bindra, K.S.: Enhancement of oxidation resistance of modified P91 grade ferritic-martensitic steel by surface modification using laser shock peening Appl. Surf. Sci. 495(143611), 1–12 (2019)

    Google Scholar 

  28. Banerjee, A., Raju, S., Divakar, R., Mohandas, E.: High temperature heat capacity of alloy D9 using drop calorimetry based enthalpy increment measurements. Int. J. Thermophys. 28, 97–108 (2007)

    Google Scholar 

  29. Latha, S., Mathew, M.D., Parameswaran, P., Bhanu Sankara Rao, K., Mannan, S.L.: Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes. Int. J. Press. Vessels Pip. 85, 866–870 (2008)

    Google Scholar 

  30. Latha, S., Mathew, M.D., Rao, B.S., Mannan, S.L.: Creep deformation behavior of alloy D9 cladding tubes. Trans. Ind. Inst. Metall. 53, 249–253 (2000)

    Google Scholar 

  31. Biswal, R.: Development of a 7J/10 ns Nd:YAG laser oscillator-amplifier system. RRCAT newsletter. 31, L.6 (2018) http://www.rrcat.gov.in/newsletter/NL/nl2018/issue2/pdf/L6.pdf, visited on 15.04.2019

    Google Scholar 

  32. Cullity, B.D.: Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Menlo Park (1978)

    Google Scholar 

  33. Suryanarayana, C., Grant Norton, M.: X-ray diffraction - A practical approach. Plenum press, NewYork (1998)

    Google Scholar 

  34. ASTM: E112-13. Standard test methods for determining average grain size. ASTM international, Pennsylvania

  35. Kolhatkar, A.: Karthik, V., Chaitanya, G., Anish Kumar, and Divakar, R.: Development and validation of a miniature tensile specimen for determination of mechanical properties. J. Test. Eval. 47, 3417–3431 (2019)

    Google Scholar 

  36. Michael, A., Sutton, J.-J.O., Schreier, H.W.: Image correlation for shape, motion and deformation measurements - Basic concepts, theory and applications. Springer-Verlag, Boston (2009)

    Google Scholar 

  37. ASTM: E1461-13, Standard test method for thermal diffusivity by the flash method. ASTM International, Pennsylvania

  38. Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, L.G.: Flash method for determining thermal diffusivity, heat capacity and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961)

    Google Scholar 

  39. Palanichamy, P., Sivabharathy, M., Jeyadheepan, K., Kalyanasundaram, P., Ramachandran, K., Sanjeeviraja, C.: Effect of annealing on cold worked D9 alloy by photoacoustics. Mater. Sci. Forum. 699, 89–102 (2012)

    Google Scholar 

  40. Telang, A., Gill, A.S., Teysseyre, S., Mannava, S.R., Dong, Q., Vasudevan, V.K.: Effects of laser shock peening on SCC behavior of alloy 600 in tetrathionate solution. Corro. Sci. 90, 434–444 (2015)

    Google Scholar 

  41. Mordyuk, B.N., Milman, Y.V., Iefimov, M.O., Prokopenko, G.I., Silberschmidt, V.V., Danylenko, M.I., Kotko, A.V.: Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel. Surf. Coat. Technol. 202, 4875–4883 (2008)

    Google Scholar 

  42. Dan Wedberg: Dislocation density based material model applied in FE-simulation of material cutting. (Thesis), Lulea Univ. of Technol. ISBN: 978-91-7439-126-8 (2010).

  43. Pierce, D.T., Jimenez, J.A., Bentley, J., Raabe, D., Wittig, J.E.: The influence of stacking fault energy on the microstructural and strain hardening evolution of Fe-Mn-Al-Si steels during tensile deformation. Acta Mater. 100, 178–190 (2015)

    Google Scholar 

  44. Llewellyn, D.T.: Work hardening effects in austenitic stainless steels. Mater. Sci. Technol. 13, 389–400 (1997)

    Google Scholar 

  45. Gerland, M., Hallouin, M.: Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses. J. Mater. Sci. 29, 345–351 (1994)

    Google Scholar 

  46. Lojkowski, W., Djahanbakhsh, M., Burkle, G., Gierlotka, S., Zielinski, W., Fecht, H.J.: Nanostructure formation on the surface of railway tracks. Mater. Sci. Eng. A. 303, 197–208 (2001)

    Google Scholar 

  47. Fairand, B.P., Wilcox, B.A., Gallagher, W.J., Williams, D.N.: Laser shock induced microstructural and mechanical property changes in 7075 aluminum. J. Appl. Phy. 43, 3893–3895 (1972)

    Google Scholar 

  48. Busby, J.T., Hash, M.C., Was, G.S.: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336, 267–278 (2005)

    Google Scholar 

  49. Cahoon, J.R., Broughton, W.H., Kutsak, A.R.: The determination of yield strength from hardness measurements. Metall. Trans. 2, 1979–1983 (1971)

    Google Scholar 

  50. Takakuwa, O., Kawaragi, Y., Soyama, H.: Estimation of the yield stress of stainless steel from the Vickers hardness taking account of the residual stress. J. Surf. Eng. Mater. Adv. Technol. 3, 262–268 (2013)

    Google Scholar 

  51. Tripathy, H., Rai, A.K., Hajra, R.N., Vijayashanthi, N., Raju, S., Saroja, S.: High temperature thermophysical properties of 18Cr-9Ni-2.95Cu-0.59Nb-0.1C (mass %) austenitic stainless steel. J. Therm. Anal. Calorim. 131(3), 2749–2761 (2018)

    Google Scholar 

  52. Costanza, G., Montanari, R., Paoloni, S., Tata, M.E.: Dislocation density effect on thermal diffusivity of AISI 316 steel. Key Eng. Mater. 605, 27–30 (2014). https://doi.org/10.4028/www.scientific.net/KEM.605.27

    Article  Google Scholar 

  53. Skiba, J., Kulczyk, M., Pachla, W., Wiśniewski, T.S., Smalc-Koziorowska, J., Kubiś, M., Wróblewska, M., Przybysz, M.: Effect of severe plastic deformation realized by hydrostatic extrusion on heat Transfer in cp-Ti grade 2 and 316L austenitic stainless steel. J. Nanomed. Nanotechnol. 9, 511 (2018). https://doi.org/10.4172/2157-7439.1000511

    Article  Google Scholar 

  54. Paoloni, S., Tata, M.E., Scudieri, F., Mercuri, F., Marinelli, M., Zammit, U.: IR thermography characterization of residual stress in plastically deformed metallic components. Appl. Phys. A. 98, 461–465 (2010)

    Google Scholar 

  55. Altenberger, I., Stach, E.A., Liu, G., Nalla, R.K., Ritchie, R.O.: An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening. Scripta Mater. 48, 1593–1598 (2003)

    Google Scholar 

  56. Tripathy, H., Raju, S., Rai, A.K., Jayakumar, T.: A calorimetric study of recovery and recrystallization in Fe-14.4Cr-15.4Ni-2.4Mo-2.36Mn-0.25Ti-0.04C-0.05P (mass %) austenitic stainless steel. Steel Research Int. 84, 1046–1059 (2013)

    Google Scholar 

Download references

Acknowledgement

Authors acknowledge Dr. A.K. Bhaduri, Director IGCAR and Dr. Shaju K. Albert, Director MMG for their support and encouragement during the course of this work. Authors would like to thank Dr. V. David Vijayanand, MEG, IGCAR, for extending his facility for controlled etching of D9 specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sundar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundar, R., Sudha, C., Rai, A.K. et al. Effect of laser shock peening on the microstructure, tensile and heat transport properties of Alloy D9. Lasers Manuf. Mater. Process. 7, 259–277 (2020). https://doi.org/10.1007/s40516-020-00118-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-020-00118-y

Keywords

Navigation