Skip to main content
Log in

Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Nitinol structures were synthesized in a fully dense form using a laser direct deposition method. The pure elemental metal powders of nickel and titanium were used and powder ratios were controlled to arrive at the prescribed final chemical compositions of Nitinol. The transformation temperatures of synthesized Nitinol samples with different chemical composition and post heat treatment conditions were systematically analyzed and compared with those of conventional Nitinol. Compared to Nitinol parts produced by other techniques, the laser engineered net shaping (LENS) created the least amount of secondary phase, indicating the possibility of high corrosion resistance. Two step post processing of solution heat treatment and aging heat treatment was carried out to improve the homogeneity of the microstructure and to investigate its effects on phase transformation temperatures. The resultant phase transformation temperatures could be controlled by the heat treatment parameters. Compression test results showed mechanical properties of synthesized Nitinol samples are largely affected by its post heat treatment history while the effect of initial chemical composition was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Duerig, T., Pelton, A., Stockel, D.: An overview of nitinol medical applications. Mater. Sci. Eng. A. 273-275, 149–160 (1999)

    Article  Google Scholar 

  2. Chen, M., Yang, X., Hu, R., Cui, Z., Man, H.: Bioactive NiTi shape memory alloy used as bone bonding implants. Mater. Sci. Eng. C. 24(4), 497–502 (2004)

    Article  Google Scholar 

  3. Bernard, S., Balla, V., Davies, N., Bose, S., Bandyopadhyay, A.: Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 7(4), 1902–1912 (2011)

    Article  Google Scholar 

  4. Michiardi, A., Aparicio, C., Planell, J., Gil, F.: Electrochemical behaviour of oxidized NiTi shape memory alloys for biomedical applications. Surf. Coat. Technol. 201(14), 6484–6488 (2007)

    Article  Google Scholar 

  5. Shabalovskaya, S., Anderegg, J., Van Humbeeck, J.: Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 4(3), 447–467 (2008)

    Article  Google Scholar 

  6. Wu, M.: H.: fabrication of Nitinol materials and components. Mater. Sci. Forum. 394, 285–292 (2002)

    Article  Google Scholar 

  7. Bram, M., Bitzer, M., Buchkremer, H., Stover, D.: Reproducibility study of NiTi parts made by metal injection molding. J. Mater. Eng. Perform. 21(12), 2701–2712 (2012)

    Article  Google Scholar 

  8. Mentz, J., Bram, M., Buchkremer, H., Stover, D.: Improvement of mechanical properties of powder metallurgical NiTi shape memory alloys. Adv. Eng. Mater. 8(4), 247–252 (2006)

    Article  Google Scholar 

  9. Ismail, M., Goodall, R., Davies, H., Todd, I.: Porous NiTi alloy by metal injection moulding/sintering of elemental powders: effect of sintering temperature. Mater. Lett. 70, 142–145 (2012)

    Article  Google Scholar 

  10. Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer, H., Stover, D.: Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater. Sci. Eng. A. 337(1-2), 254–263 (2002)

    Article  Google Scholar 

  11. Bansiddhi, A., Sargeant, T., Stupp, S., Dunand, D.: Porous NiTi for bone implants: a review. Acta Biomater. 4(4), 773–782 (2008)

    Article  Google Scholar 

  12. Malukhin, K., Ehmann, K.: Material characterization of NiTi based memory alloys fabricated by the laser direct metal deposition process. J. Manuf. Sci. Eng. 128(3), 691–696 (2006)

    Article  Google Scholar 

  13. Halani, P., Shin, Y.: In situ synthesis and characterization of shape memory alloy Nitinol by laser direct deposition. Metal. Mater. Trans. A. 43A, 650–657 (2012)

    Article  Google Scholar 

  14. Khademzadeh, S., Parvin, N., Bariani, P.: Production of NiTi alloy by direct metal deposition of mechanically alloyed powder mixtures. Int. J. Precis. Eng. Manuf. 16(11), 2333–2338 (2015)

    Article  Google Scholar 

  15. Shishkovsky, I., Yadroitsev, I., Smurov, I.: Direct selective laser melting of nitinol powder. Phys. Procedia. 39, 447–454 (2012)

    Article  Google Scholar 

  16. Bernard, S., Balla, V., Bose, S., Bandyopadhyay, A.: Rotating bending fatigue response of laser processed porous NiTi alloy. Mater. Sci. Eng. C. 31(4), 815–820 (2011)

    Article  Google Scholar 

  17. Bernard, S., Balla, V., Bose, S., Bandyopadhyay, A.: Compression fatigue behavior of laser processed porous NiTi alloy. J. Mech. Behav. Biomed. 13, 62–68 (2012)

    Article  Google Scholar 

  18. Halani, P., Kaya, I., Shin, Y., Karaca, H.: Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater. Sci. Eng. A. 559, 836–843 (2013)

    Article  Google Scholar 

  19. Hamilton, R., Palmer, T., Bimber, B.: Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds. Scr. Mater. 101, 56–59 (2015)

    Article  Google Scholar 

  20. Shiva, S., Palani, I., Mishra, S., Paul, C., Kukreja, L.: Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing. Opt. Laser Technol. 69, 44–51 (2015)

    Article  Google Scholar 

  21. Hamilton, R., Bimber, B., Andani, M., Elahinia, M.: Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. J. Mater. Process. Technol. 250, 55–64 (2017)

    Article  Google Scholar 

  22. Pelton, A., DiCello, J., Miyazaki, S.: Optimisation of processing and properties of medical grade Nitinol wire. Minim. Invasiv. Ther. 9(2), 107–118 (2000)

    Article  Google Scholar 

  23. Sun, B., Fu, M.W., Lin, J., Ning, Y.Q.: Effect of low-temperature aging treatment on thermally-and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Mater. Des. 131, 49–59 (2017)

    Article  Google Scholar 

  24. Fan, Q.C., Zhang, Y.H., Wang, Y.Y., Sun, M.Y., Meng, Y.T., Huang, S.K., Wen, Y.H.: Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Mater. Sci. Eng. A. 700, 269–280 (2017)

    Article  Google Scholar 

  25. Adharapurapu, R.R., Vecchio, K.S.: Effects of aging and cooling rate on the transformation of nanostructured Ti-50.8 Ni. Mater. Sci. Eng. A. 693, 150–163 (2017)

    Google Scholar 

  26. Saedi, S., Turabi, A., Andani, M., Haberland, C., Karaca, H., Elahinia, M.: The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J. Alloys Compd. 677, 204–210 (2016)

    Article  Google Scholar 

  27. Ahadi, A., Sun, Q.: Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-effects of grain size. Appl. Phys. Lett. 103(2), 021902 (2013)

    Article  Google Scholar 

  28. Sun, B., Fu, M.W., Lin, J.P., Ning, Y.Q.: Effect of low-temperature aging treatment on thermally-and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Mater. Des. 131, 49–59 (2017)

    Article  Google Scholar 

  29. Adharapurapu, R.R., Vecchio, K.S.: Effects of aging and cooling rate on the transformation of nanostructured Ti-50.8 Ni. J. Alloys Compd. 693, 150–163 (2017)

    Article  Google Scholar 

  30. Bertheville, B., Neudenberger, M., Bidaux, J.E.: Powder sintering and shape-memory behaviour of NiTi compacts synthesized from Ni and TiH2. Mater. Sci. Eng. A. 384, 143–150 (2004)

  31. Tang, W., Sundman, B., Sandstrom, R., Qiu, C.: New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater. 47(12), 3457–3468 (1999)

    Article  Google Scholar 

  32. Yeung, K., Cheung, K., Lu, W., Chung, C.: Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater. Sci. and Eng. A 383(2), 213–218 (2004)

    Article  Google Scholar 

  33. Krone, L., Mentz, J., Stover, D., Epple, M., "NiTi shape memory alloy parts produced by metal injection molding", Proc. International Conference on Shape Memory and Superelastic Technologies, Baden-Baden, 495–500 (2004)

  34. Mercier, O., Melton, K.N.: Theoretical and experimental efficiency of the conversion of heat into mechanical energy using shape-memeory alloys. J. Appl. Phys. 52(2), 1030–1037 (1981)

    Article  Google Scholar 

  35. Mercier, O., Melton, K.N.: Kinetics and thermodynamics of the shape-memory effect in martensitic NiTi and (Ni1− x Cu x) Ti alloys. J. Appl. Phys. 50(9), 5747–5756 (1979)

    Article  Google Scholar 

  36. Wasilewski, R.J., Butler, S.R., Hanlon, J.E.: On the martensitic transformation in TiNi. Met. Sci. J. 1(1), 104–110 (1967)

    Article  Google Scholar 

  37. Mukherjee, K., Sircar, S., Dahotre, N.B.: Thermal effects associated with stress-induced martensitic transformation in a Ti-Ni alloy. Mater. Sci. Eng. 74(1), 75–84 (1985)

    Article  Google Scholar 

  38. Chu, C., Chung, J., Chu, P.: Effects of heat treatment on characteristics of porous Ni-rich NiTiSMA prepared by SHS technique. Trans. Nonferr. Metal. Soc. 16(1), 49–53 (2006)

    Article  MathSciNet  Google Scholar 

  39. Majkic, G., Chennoufi, N., Chen, Y., Salama, K.: Synthesis of NiTi by low electrothermal loss spark plasma sintering. Metal. Mater. Trans. A. 38A, 2523–2530 (2007)

    Article  Google Scholar 

  40. Yuan, B., Chung, C., Zhu, M.: Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing. Mater. Sci. Eng. A. 382(1-2), 181–187 (2004)

    Article  Google Scholar 

  41. Shishkovsky, I., Tarasova, E., Zhuravel’, L., Petrov, A.: The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions. Tech. Phys. Lett. 27, 211–213 (2001), 3

  42. Haberland, C., Meier, H., Frenzel, J.: On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting.  ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 97–104, Georgia, USA, Sept. 19–21 (2012)

  43. Chu, C., Chung, C., Lin, P.: DSC study of the effect of aging temperature on the reverse martensitic transformation in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. Mater. Lett. 59(4), 404–407 (2005)

    Article  Google Scholar 

  44. Liang, Y., Jiang, S., Zhang, Y., Yu, J.: Microstructure, mechanical property, and phase transformation of quaternary NiTiFeNb and NiTiFeTa shape memory alloys. Metals-Basel 7(8), 309 (2017)

  45. Grossmann, C., Frenzel, J., Sampath, V., Depka, T., Eggeler, G.: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metal. Mater. Trans. A 40A, 2530–2544 (2009)

    Article  Google Scholar 

  46. Rosner, H., Schlossmacher, P., Shelyakov, A., Glezer, A.: The influence of coherent and semi-coherent TiCu precipitates on the martensitic transformation of melt-spun Ti50Ni25Cu25 shape memory ribbons. Mater. Trans. 42, 1758–1762 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant No. CMMI-1233783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung C. Shin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Shin, Y.C. Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol. Lasers Manuf. Mater. Process. 6, 41–58 (2019). https://doi.org/10.1007/s40516-019-0079-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-019-0079-5

Keywords

Navigation