Skip to main content
Log in

Laser Shock Peening and its Applications: A Review

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In this paper Laser Shock Peening (LSP), as a surface treatment technique for metals and alloys is reviewed. A brief introduction covering LSP process, LSP on various materials and some innovative applications of LSP have been discussed. Critical laser parameters for LSP such as laser energy, pulse width, wavelength, overlap rate, role of sacrificial coating and transparent overlay are presented towards parameter optimization perspective. A small section has been devoted to detail the development of a pulsed Nd:YAG laser that was built in house, exclusively for the LSP applications. Role of LSP in improving the material properties such as fatigue, Stress Corrosion Cracking (SCC), Inter Granular Corrosion (IGC) besides, rejuvenation of fatigue life of pre fatigued specimens and hybrid technique to rejuvenate the SCC damaged components are discussed. Further, results on oblique laser peening along with its successful application to the interior of cylindrical geometry specimens for improving the SCC resistance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Askaryan, G.A., Moroz, E.M.: Pressure of evaporation of matter in a radiation beam. J Exp Theor Phys+. (U.S.S.R.). 43, 2319–2320 (1962)

    Google Scholar 

  2. Skeen, C.H., York, C.M.: Laser induced “blow off” phenomena. Appl Phys Lett. 12, 369 (1968)

    Article  Google Scholar 

  3. Gregg, D.W., Thomas, S.J.: Momentum transfer produced by focused laser giant pulses. J Appl Phys. 37(2787), (1966)

  4. Fairand, B.P., Clauer, A.H., Jung, R.G., Wilcox, B.A.: Quantitative assessment of laser induced stress waves generated at confined surfaces. Appl Phys Lett. 25(8), 431–433 (1974)

    Article  Google Scholar 

  5. Clauer, A.H., Fairand, B.P., Wilcox, B.A.: Pulsed laser induced deformation in an Fe-3 Wt Pct Si Alloy. Metall. Trans. A. 8A, 119–125 (1977)

    Article  Google Scholar 

  6. Allan, H., Clauer, B., Fairand, P., Bena, A.: Wilcox.: laser shcok hardening of weld zones in Aluminium alloys. Metall. Trans. A. 8A, 1871–1876 (1977)

    Google Scholar 

  7. Allan H. Clauer.: A Historical Perspective on Laser Shock Peening, MFN Metal Finishing News, 10, (2009), http://www.mfn.li/archive/issue_view.php?id=648, Accessed 04 Jun 2019

  8. Mannava, S., and Ferrigno, S.J..: Laser shock peening for gas turbine engine vane repair. US patent 5675892A, General Electric Company (1997). https://patents.google.com/patent/US5675892A/en. Accessed 04 Jun 2019

  9. Ganesh, P., Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Hedaoo, P., Tiwari, P., Kukreja, L.M., Oak, S.M., Dasari, S., Ragvendra, D.: Studies of laser peening on spring steel for automotive applications. Opt Laser Eng. 50, 678–686 (2012)

    Article  Google Scholar 

  10. Ganesh, P., Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Hedaoo, P., Ragvendra, G., Anand Kumar, S., Tiwari, P., Nagpure, D.C., Bindra, K.S., Kukreja, L.M., Oak, S.M.: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening. Mater Des. 54, 734–741 (2014)

    Article  Google Scholar 

  11. Pant, B.K., Sundar, R., Kumar, H., Kaul, R., Pavan, A.H.V., Ranganathan, K., Bindra, K.S., Oak, S.M., Kukreja, L.M., Prakash, R., Kamaraj, M., et al.: Mater. Sci. Eng., A. 587, 352–358 (2013)

    Article  Google Scholar 

  12. Gupta, R.K., Sundar, R., Sunil Kumar, B., Ganesh, P., Kaul, R., Ranganathan, K., Bindra, K.S., Kain, V., Oak, S.M., Kukreja, L.M.: A hybrid laser surface treatment for refurbishment of stress corrosion cracking damaged 304L stainless steel. J. Mater. Eng. Perform. 24, 2569–2576 (2015)

    Article  Google Scholar 

  13. Sundar, R., Ganesh, P., Sunil Kumar, B., Gupta, R.K., Nagpure, D.C., Kaul, R., Ranganathan, K., Bindra, K.S., Kain, V., Oak, S.M., Singh, B.: Mitigation of stress corrosion cracking susceptibility of machined 304L stainless steel through laser peening. J. mater. Eng. Perform. 25, 3710–3724 (2016)

    Article  Google Scholar 

  14. Gupta, R.K., Sunil Kumar, B., Sundar, R., Ram Sankar, P., Ganesh, P., Kaul, R., Kain, V., Ranganathan, K., Bindra, K.S., Singh, B.: Enhancement of intergranular corrosion resistance of type 304 stainless steel through laser shock peening. Corros Eng Sci Techn. 52(3), 220–225 (2017)

    Article  Google Scholar 

  15. Abdullahi, K., Gujba 1, Medraj, M.: Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials. 7, 7925–7974 (2014)

    Article  Google Scholar 

  16. Peyre, P., Berthe, L., Vignal, V., Popa, I., Baudin, T.: Analysis of laser shock waves and resulting surface deformations in an Al–cu–li aluminum alloy. J Phys D Appl Phys. 45(33), 335304 (2012)

    Article  Google Scholar 

  17. Peyre, P., Fabbro, R., Merrien, P., Lieurade, H.P., et al.: Mater. Sci. Eng., A. A210, 102–113 (1996)

    Article  Google Scholar 

  18. Amarchinta, H.K., Grandhi, R.V., Langer, K., Stargel, D.S.: Material model validation for laser shock peening process simulation. Modelling Simul Mater Sci Eng. 17(1), 015010 (2009)

    Article  Google Scholar 

  19. Peyre, P., Berthe, L., Scherpereel, X., Fabbro, R., Bartnicki, E.: Experimental study of laser-driven shock waves in stainless steels. J Appl Phys. 84(11), 5985–5992 (1998)

    Article  Google Scholar 

  20. Hong, X., Wang, S., Guo, D., Wu, H., Wang, J., Dai, Y., Xia, X., Xie, Y.: Confining medium and absorptive overlay: Their effects on a laser-induced shock wave. Opt Laser Eng. 29, 447–455 (1998)

    Article  Google Scholar 

  21. Massse, J.-E., Barreau, G.: Laser generation of stress waves in metal. Surf. Coat. Techno. 70, 231–234 (1995)

    Article  Google Scholar 

  22. Devaux, D., Fabbro, R., Tollier, L., Bartnicki, E.: Generation of shcok waves by laser-induced plasma in confined geometry. JAppl Phy. 74(4), 2268–2273 (1993)

    Article  Google Scholar 

  23. Berthe, L., Fabbro, R., Peyre, P., Tollier, L., Bartnicki, E.: Shock waves from a water-confined laser-generated plasma. JAppl Phy. 82(6), 2826–2832 (1997)

    Article  Google Scholar 

  24. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser-produced plasma in confined geometry. J Appl Phy. 68, 75–784 (1990)

    Article  Google Scholar 

  25. Wu, B., Shin, Y.C.: A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments. J Appl Phys. 97(113517), 113517 (2005)

    Article  Google Scholar 

  26. Wu, B., Shin, Y.C.: A one-dimensional hydrodynamic model for pressures induced near the coating-water interface during laser shock peening. J Appl Phys. 101(023510), (2007)

  27. Wu, B., Shin, Y.C.: Two dimensional hydrodynamic simulation of high pressures induced by high power nanosecond laser matter interactions under water. J. Appl. Phys. 101, 103514 (2007)

    Article  Google Scholar 

  28. Yunfeng Cao., Yung C. Shin.: Shock wave propagation and spallation study in laser shock peening. J. Eng. Mater. Technol. 132, 041005–1 to 041005–8 (2010),

  29. Wei, X.L., Ling, X.: Numerical modeling of residual stress induced by laser shock processsing. Appl Surf Sci. 301, 557–563 (2014)

    Article  Google Scholar 

  30. Ayed, M., Frija, M., Fathallah, R.: Prediction of residual stress profile and optimization of surface conditions induced by laser shock peening process using artificial neural networks. Int J Adv Manuf Technol. 100(9-12), 2455–2471 (2019). https://doi.org/10.1007/s00170-018-2883-z

    Article  Google Scholar 

  31. Sobieslaw Stanislaw Gace.: Molecular dynamics simulation of shock waves in laser-material interaction. Ph.D thesis, Iowa State University (2009). https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1712&context=etd Accessed on 04 Jun 2019

  32. Zhencheng Ren, Chang Ye, Yalin Dong.: Molecular dynamic simulation of surface amorphization of NiTi under dynamic shock peening. Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference. MSEC2015. June 8–12, (2015), Charlotte, North Carolina, USA https://doi.org/10.1115/MSEC2015-9320

  33. Peyre, P., Fabbro, R., Berthe, L., Dubouchet, C.: Laser shock processing of materials, physical processes involved and examples of applications. J Laser Appl. 8(3), 135–141 (1996)

    Article  Google Scholar 

  34. Fournier, J., Ballard, P., Merrien, P., Barralis, J., Castex, L., Fabbro, R.: Mechanical effects induced by shock waves generated by high energy laser pulses, J. Phy III, France. 1(9), 1467–1480 (1991)

    Article  Google Scholar 

  35. Peyre, P., Fabbro, R.: Laser shock processing: a review of the physics and applications. Opt Quant Electron. 27, 1213–1229 (1995)

    Google Scholar 

  36. Jiang, X.P., Man, C.-S., Shepard, M.J., Zhai, T.: Effects of shot-peening and re-shot-peening on four-pointbend fatigue behavior of Ti–6Al–4V. Mat Sci and Engg A. 468–470, 137–143 (2007)

    Article  Google Scholar 

  37. Paul, S.P., Cammett, J.T.: The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int J Fatigue. 26(9), 975–982 (2004)

    Article  Google Scholar 

  38. Delgado, P., Cuesta, I.I., Alegre, J.M., Díaz, A.: State of the art of deep rolling. Precis Eng. 46, 1–10 (2016)

    Article  Google Scholar 

  39. Statnikov, E.S., Korolkov, O.V., Vityazev, V.N.: Physics and mechanism of ultrasonic impact. Ultrasonics. 44, e533–e538 (2006)

    Article  Google Scholar 

  40. Srivastava, M., Tripathi, R., Hloch, S., Chattopadhyaya, S., Dixit, A.R.: Potential of using water jet peening as a surface treatment process for welded joints. Procedia Eng. 149, 472–480 (2016)

    Article  Google Scholar 

  41. Soyama, H., Sait, K., Saka, M.: Improvement of fatigue strength of aluminium alloy by cavitation shotless peening. J. Eng. Mater. Technol. 124, 135 (2002)

    Article  Google Scholar 

  42. Linda Suzanne Clitheroe.: The physical and microstructural properties of peened austenitic stainless steel. Ph.D Thesis. University of Manchester, (2010), https://www.research.manchester.ac.uk/portal/files/54509593/FULL_TEXT.PDF Accessed on 04 Jun 2019

  43. Ding K &Ye L.: Laser shock peening performance and process simulation, WoodHead publishing in materials, Woodhead Publishing Limited and CRC Press LLC, (2006)

  44. Charles S. Montross, Tao Wei., Lin Ye., Graham Clark., Yiu-wing Mai.: Laser shock processing and its effects on microstructure and properties of metal alloys: a review, Int J Fatigue 24, 1021–1036 (2002)

  45. Prevey, P.S.: The effect of cold work on the thermal stability of residual compression in surface enhanced IN718, 20th ASM heat treating society conference proceedings 9–12, Oct 2000, St.Louis, MO http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.513.2788&rep=rep1&type=pdf Accessed on 16 Jun 2019

  46. Sano, Y., Akita, K., Masaki, K., Ochi, Y., Altenberger, I., Scholtes, B.: Laser peening without coating as a surface enhancement technology. J Laser Micro Nanoen. 1, 161–166 (2006)

    Article  Google Scholar 

  47. Sano, Y., Mukai, N., Okazak, K., Obata, M.: Residual stress improvement in metal surface by underwater laser irradiation. Nucl. Instr. Meth. Phys. Res. B. 121, 432–436 (1997)

    Article  Google Scholar 

  48. Zhu, J., Jiao, X., Zhou, C., Gao, H.: Applications of underwater laser peening in nuclear power plant maintenance. Energy Procedia. 16, 153–158 (2012)

    Article  Google Scholar 

  49. Kalainathan, S., Prabhakaran, S.: Recent development and future perspectives of low energy laser shock peening: review. Opt Laser Technol. 81, 137–144 (2016)

    Article  Google Scholar 

  50. Yoda, M., Mukai, N., Sano, Y., Ogawa, K., Kimura, M., Sato, K., Uehara, T., Sudo, A., and Suezono, N.: Fiber-delivered laser peening system to improve mechanical properties of metal surface. Transactions on Engineering Sciences. ISSN 1743–3533, 33, 233–242 WIT Press, (2001)

  51. Karthik, D., Kalainathan, S., Swaroop, S.: Surface modification of 17-4 PH stainless steel by laser peening without protective coating process. Surf Coat Technol. 278, 138–145 (2015)

    Article  Google Scholar 

  52. Liao, Y., Ye, C., Cheng, G.J., et al.: Opt Laser Technol. 78, 15–24 (2016)

    Article  Google Scholar 

  53. Liao, Y., Ye, C., Kim, B.-J., Suslov, S., Stach, E.A., Cheng, G.J.: Nucleation of highly dense nanoscale precipitates based on warm laser shock peening. J. Appl. Phys. 108, 063518–1–063518-8 (2010)

    Google Scholar 

  54. Hackel, L., Rankin, J.R., Rubenchik, A., King, W.E., Matthews, M.: Laser peening: A tool for additive manufacturing post-processing. Addit. Manuf. 24, 67–75 (2018)

    Article  Google Scholar 

  55. Kalentics, N., Boillat, E., Peyre, P., Gorny, C., Kenel, C., Leinenbach, C., Jhabvala, J., Logé, R.E.: 3D laser shock peening – A new method for 3D control of residual stresses in selective laser melting. Mater. Des. 130, 350–356 (2017)

    Article  Google Scholar 

  56. Sihai Luo., Liucheng Zhou., Xuede Wang., Xin Cao., Xiangfan Nie and Weifeng He.: Surface nanocrystallization and amorphization of dual-phase TC11 titanium alloys under laser induced ultrahigh strain-rate plastic deformation. Materials. 11; 563 (2018)

  57. Samuel Adu-Gyamfi., Ren, X.D., Enoch Asuako Larson., Yunpeng Ren., Zhaopong Tong.: The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy. Opt. Laser. Technol. 108, 177–185 (2018)

  58. Correa, C., Ruiz de Lara, L., Díaz, M., Gil-Santos, A., Porro, J.A., Ocaña, J.L.: Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening. Int. J. Fatigue. 79, 1–9, (2015)

  59. Qiao Hongchao., Sun Boyu., Zhao Jibin., Lu Ying., Cao Zhihe.: Numerical modeling of residual stress field for linear polarized laser oblique shock peening. Optik (2019), https://doi.org/10.1016/j.ijleo.2019.04.083

  60. Fabbro, R., Peyre, P., Berthe, L., Scherpereel, X.: Physics and applications of laser-shock processing. J Laser Appl. 10(6), 265–279 (1998)

    Article  Google Scholar 

  61. Berthe, L., Fabbro, R., Peyre, P., Bartnicki, E.: Wavelength dependent of laser shock-wave generation in the water-confinement regime. J. Appl. Phys. 85, 7552 (1999)

    Article  Google Scholar 

  62. Liu, X., Du, D., Mourou, G.: Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron. 33(10), 1706–1716 (1997)

    Article  Google Scholar 

  63. Noack, J., Vogel, A., et al.: IEEE J. Quantum Electron. 35, 1156–1167 (1999)

    Article  Google Scholar 

  64. Benxin, W., Tao, S., Lei, S.: Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments, app. Surf Sci. 256, 4376–4382 (2010)

    Article  Google Scholar 

  65. Dongkyun Lee and Elijah Kannatey-Asibu, Jr.: Experimental investigation of laser shock peening using femtosecond laser pulses, J. Laser Appl. 23, 022004–1 to 022004–9(2011)

  66. Petan, L., Cana, J.L.O., Grum, J.: Influence of laser shock peening pulse density and spot size on the surface integrity of X2NiCoMo18–9-5 maraging steel. Surf. Coat. Technol. 307, 262–270 (2016)

    Article  Google Scholar 

  67. Hu, Y., Yao, Z.: Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser. Surf Coat Techol. 202(1517–1525), 1517–1525 (2008)

    Article  Google Scholar 

  68. Hu, Y., Yao, Z.: Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Mater Sci Eng. A417(334–340), (2006)

  69. Walter Koechner.: Solid State Laser Engineering” Springer Series in Optical Sciences, Sixth revised and updated edition, USA (2006)

  70. Carthy, N.M., Lavigne, P.: Large-size Gaussian mode in unstable resonators using Gaussian mirrors. Opt. Lett. 10, 553–555 (1985)

    Article  Google Scholar 

  71. Silvestri, S.D., Laporta, P., Magni, V.S., O.: Unstable laser resonators with super-Gaussian mirrors. Opt Lett. 13(3), 201–203 (1988)

    Article  Google Scholar 

  72. Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Tiwari, P., Kukreja, L.M., Oak, S.M.: Studies on laser peening using different sacrificial coatings. Surf Eng. 28(8), 564–568 (2012)

    Article  Google Scholar 

  73. Cullity, B.D.: Elements of X-ray diffraction, copyright 1956. Addison-Wesley publishing company, USA

  74. Pineault, J.A, Belassel, M., Brauss, M.E.: X-ray diffraction residual stress measurement in failure analysis. in: William T Becker., Roch J Shipley (Eds.), Failure analysis and prevention, ASM International. 11, 484–497. https://doi.org/10.31399/asm.hb.v11.a0003528

  75. Noyan, I.C and Cohen, J.B.: in Iischner, B., amd Grant, N.J.: Residual Stress-measurement by diffraction and interpretation. Springer series on materials research and engineering New York (1987),

  76. Rossini, N.S., Dassisti, M., Benyounis, K.Y., Olabi, A.G.: Methods of measuring residual stresses in components. Mater Des. 35, 572–588 (2012)

    Article  Google Scholar 

  77. Chu, J.P., Rigsbee, J.M., Banas, G., Elsayed-Ali, H.E.: Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel. Mater Sci Eng A. 260, 260–268 (1999)

    Article  Google Scholar 

  78. Paul Prevey., Jayaraman, N., Ravi Ravindranath.: Introduction of Residual Stresses to Enhance Fatigue Performance in the Initial Design. GT2004–53971, 231–239; doi:https://doi.org/10.1115/GT2004-53971

  79. Ferreira, J.A.M., Boorrego, L.F.P., Costa, J.D.M.: Effects of surface treatments on the fatigue of notched bend specimens. Fatigue Fract. Eng. Mater. Struct. 19, 111 (1996)

    Article  Google Scholar 

  80. Hammersley, G., Hackel, L.A., Harris, F.: Surface prestressing to improve fatigue strength of components by laser shot peening. Opt Laser Eng. 34, 327–337 (2000)

    Article  Google Scholar 

  81. Kirk D.: External characteristics of shot peened surfaces, The Shot Peener; 24–32, (2008) https://www.shotpeener.com/library/pdf/2008037.pdf Accessed on 04 Jun 2019

  82. Ludian, T., Wagner, L.: Coverage effects in shot peening of Al2024-T4.In: Proceedings 9th international conference on shot peening (ICSP9),296–301, Sept.6–9 (2005)Paris, France. https://www.shotpeener.com/library/pdf/2005100.pdf Accessed on 04 Jun 2019

  83. Kailash Chaudhary.: Importance of controlling parameters in shot peening process. JETIR ISSN-2349–5162, 4, 220–223, (2017)

  84. Dieter, G.E.: Mechanical metallurgy. McGraw Hill Book Co Singapore. ISBN-0071004068, (1988)

  85. Lu, J.Z., Luo, K.Y., Zhang, Y.K., Cui, C.Y., Sun, G.F., Zhou, J.Z., Zhang, L., You, J., Chen, K.M., Zhong, J.W.: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Mater. 58(11), 3984–3994 (2010)

    Article  Google Scholar 

  86. Luo, K.Y., Lu, J.Z., Zhang, Y.K., Zhou, J.Z., Zhang, L.F., Dai, F.Z., Zhang, L., Zhong, J.W., Cui, C.Y.: Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel. Mater Sci Eng A. 528(13-14), 4783–4788 (2011)

    Article  Google Scholar 

  87. Clauer, A.H.: Laser shock peening for fatigue resistance. In: Gregory, J.K., Rack, H.J., Eylon, D. (eds.) Surface Performance of Titanium, pp. 217–230. TMS, Warrendale, PA (1996)

    Google Scholar 

  88. Hill, M.R., Dewald, A.T., Dema, A.G., Hackel, L.A., Chen, H.-L., Brent Dane, C., Specht, R.C., Harris, F.B.: Laser peening technology. Adv Mater Processes. 161, 65–67 (2003)

    Google Scholar 

  89. Stephens, R.I.: Effect of shot and laser peening on SAE1010 steel tube with a transverse center weld subjected to constant and variable amplitude loading, www.shotpeener.com/library/pdf/2009031.pdf, Accessed on 04 Jun 2019

  90. Farhangi, H., Moghadam, A.A.F.: Fractographic investigation of the failure of second stage gas turbine blades, Proceedings of the 8th International Fracture Conference, 577–584, Istanbul, Turkey, Nov.7–9, (2007) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.3140&rep=rep1&type=pdf, Accessed on 04 Jun 2019

  91. Fathallah, R., Laamouri, A., Sidhom, H., Braham, C.: High cycle fatigue behavior prediction of shot-peened parts. Int J Fatigue. 26(10), 1053–1067 (2004)

    Article  Google Scholar 

  92. Jie Dong., Wencai Liu., Wenjiang Ding., and Jianxin Zou.: Surface characteristics and high cycle fatigue performance of shot peened magnesium alloy ZK60, JOM. 2011, 682191 (2011)

  93. Laser peening technology used on power generation components, http://www.curtisswright.com/news/press-releases/news-release-details/2007/Curtiss-Wright-Laser-Peening-Technology-Utilized-by-Siemens-Power-Generation/default.aspx, Accessed on 04 Jun 2019

  94. Prévey, P., Hornbach, D., Mason, D.: Thermal residual stress relaxation and distortion in surface enhanced gas turbine components, in: D.L.Milam, etal. (Eds.), Proceedings of the 17th Heat Treating Society Conference and 1st International Induction Heat Treating Symposium, ASM International, Materials Park, OH,3–12 (1998) https://pdfs.semanticscholar.org/72be/98c1a74dbf0cf0c97acf7a6e02d7dc4f8b7e.pdf Accessed on 16 Jun 2019

  95. Mochizuki, M.: Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking. Nucl Eng Des. 237(2), 107–123 (2007)

    Article  Google Scholar 

  96. Khatak, H.S and Raj, B., Ed.: Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, Woodhead Publishing, Cambridge, 74–139, (2002)

  97. Fe’ron, D and Olive, J.-M, Ed.: Corrosion issues in light water reactors—stress corrosion cracking. 1st ed., Woodhead Publishing, Cambridge, (2007)

  98. Stress corrosion cracking in light water reactors: good practices and lessons learned, IAEA Nuclear Energy Series”, NP-T-3.13, 2011, International Atomic Energy Agency, Vienna, https://www-pub.iaea.org/MTCD/Publications/PDF/P1522_web.pdf, Accessed on 05 Jun 2019

  99. Nakahara, M.: Preventing stress corrosion cracking of austenitic stainless steels in chemical plants. NiDi technical series 10066, Nickel Development Institute, https://www.nickelinstitute.org/media/1766/preventingstress_corrosioncrackingofausteniticstainlesssteelsinchemicalplants_10066_.pdf, Accessed on 05 Jun 2019

  100. Esmacher, J.: Stress corrosion cracking in boilers and cooling water systems, stress corrosion cracking—theory and practice, V.S. Raja and T. Shoji, Ed., Woodhead Publishing, Philadelphia, 537–607 (2011) https://doi.org/10.1533/9780857093769.4.539

  101. Jerome Isselin., Akira Kai., Kazuhiko Sakaguchi., and Tetsuo Shoji.: Assessment of the effects of cold work on crack initiation in a light water environment using the small-punch test, Metall. Mater. Trans. A. 39(A), p 1099–1108 (2008)

  102. Andresen, P.L., Morra, M.M.: IGSCC of non-sensitized stainless steels in high temperature water. J Nucl Mater. 383, 97–111 (2008)

    Article  Google Scholar 

  103. Litao Chang, M., Grace Burke, M., Scenini, F.: Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water. Scripta Mater. 164, 1–5 (2019)

    Article  Google Scholar 

  104. Sueishi, Y., Kohyama, A., Kinoshita, H., Narui, M., Fukumoto, K.: Microstructure and nano-hardness analyses of stress corrosion cracking utilizing 316L core shroud of BWR power reactors. Fusion Eng Des. 81(8-14), 1099–1103 (2006)

    Article  Google Scholar 

  105. Lyon, K.N., Marrow, T.J., Lyon, S.G.: Influence of milling on the development of stress corrosion cracks in austenitic stainless steel. J Mater Process Technol. 218, 32–37 (2015)

    Article  Google Scholar 

  106. Ghosh, S., Rana, V.P.S., Kain, V., Mittal, V., Baveja, S.K.: Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des. 32(7), 3823–3831 (2011)

    Article  Google Scholar 

  107. Trethewey, K.R.: Some observations on the current status in the understanding of stress-corrosion cracking of stainless steels. Mater Des. 29(2), 501–507 (2008)

    Article  Google Scholar 

  108. Suzuki, S., Takamori, K., Kumagai, K., Sakashita, A., Yamashita, N., Shitara, C., and Okamura, Y.: Stress corrosion cracking in low carbon stainless steel components in BWRs, E-J. Adv. Maint, 1, 1–29 (2009) http://www.jsm.or.jp/ejam/Vol.1.No.1/AP/EJAMVol.1(2009)1-29_S_SUZUKI_et_al.pdf Accessed on 16 Jun 2019

  109. Ghosh, S., Kain, V.: Microstructural changes in AISI, 304 stainless steel due to surface machining: effect on its susceptibility to chloride stress corrosion cracking. J Nucl Mater. 402, 62–67 (2010)

    Article  Google Scholar 

  110. Ghosh, S., Kain, V.: Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI, 304L stainless steel. Mater Sci Eng A. 527(3), 679–683 (2010)

    Article  Google Scholar 

  111. Lyon, K.N., Marrow, T.J., Lyon, S.B.: Influence of milling on the development of stress corrosion cracks in austenitic stainless steel. J Mater Process Technol. 218, 32–37 (2015)

    Article  Google Scholar 

  112. Acharyya, S.G., Khandelwal, A., Kain, V., Samajdar, I.: Surface working of 304L stainless steel: impact on microstructure, electrochemical behaviour and SCC resistance. Mater Charact. 72, 68–76 (2012)

    Article  Google Scholar 

  113. Lu, J.Z., Luo, K.Y., Yang, D.K., Cheng, X.N., Hu, J.L., Dai, F.Z., Qi, H., Zhang, L., Zhong, J.S., Wang, Q.W and Zhang, Y.K.: Effects of laser peening on stress corrosion cracking (SCC) of ANSI, 304 austenitic stainless steel, Corros Sci 60, p 145–152 (2012)

  114. ASTM: G36 94(2018), Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution. ASTM International, West Conshohocken, PA (2018). https://doi.org/10.1520/G0036-94R18

    Book  Google Scholar 

  115. Dayal, R.K, Parvathavarthini, N., Raj, B.: Influence of metallurgical variables on sensitization kinetics in austenitic stainless steel. Int Mater Rev 50, 129–155 (2005)

  116. Ganesh, P.: Vinod kumar a, Thinaharan C, Nanda Gopala Krishna, George R P, Parvathavarthini N, rai S K, Rakesh Kaul, Kamachi Mudali U, Kukreja L M.: enhancement of intergranular corrosion resistance of type 304 stainless steel through a novel surface e thermos-mechanical treatment, surf. Coat. Techol. 232, 920–927 (2013)

    Google Scholar 

  117. Akgun, O.V., Inal, O.T.: Desensitization of sensitized 304 stainless steel by laser surface melting. J Mater Sci. 29, 2147–2153 (1992)

    Article  Google Scholar 

  118. Kain, V., Chandra, K., Adhe, K.N., De, P.K.: Effect of cold work on low temperature sensitization behavior of austenitic stainless steel. J Nucl Mater. 334(2-3), 115–132 (2004)

    Article  Google Scholar 

  119. Lu, J.Z., Luo, K.Y., Zhang, Y.K., Sun, G.F., Gu, Y.Y., Zhou, J.Z., Ren, X.D., Zhang, X.C., Zhang, L.F., Chen, K.M., Cui, C.Y., Jiang, Y.F., Feng, A.X., Zhang, L.: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater. 58(16), 5354–5362 (2010)

    Article  Google Scholar 

  120. Zhou, L., He, W., Luo, S., Long, C., Wang, C., Nie, X., He, G., Shen, X.J., Li, Y.: Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel. J. Alloys Compd. 655, 66–70 (2016)

    Article  Google Scholar 

  121. Jang, D.Y., Watkins, T.R., Kozaczek, K.J., Hubbard, C.R., Cavin, O.B.: Surface residual stresses in machined austenitic stainless steel. Wear. 194(1-2), 168–173 (1996)

    Article  Google Scholar 

  122. Su, C.Y., Chou, C.P., Wu, B.C., Lih, W.C.: Plasma transferred arc welding of the nickel-base superalloy IN-738LC. J Mater Eng Perform. 6(5), 619–627 (1997)

    Article  Google Scholar 

  123. Bhaduri, A.K, Gil, T.P.S., Albert, S.K, Shanmugam, K., and Iyer, D.R.: Repair welding of cracked steam turbine blades using austenitic and martensitic stainless steel consumables. Nucl Eng Des 206, 249–259 (2001)

  124. Henderson, M.B., Arrell, D., Larsson, R., Heobel, M., Merchant, G.: Practices for industrial gas turbine applications. Sci Technol Weld Join. 9(1), 13–21 (2004)

    Article  Google Scholar 

  125. Kumar, A., Boy, J., Zatorski, R., Stephenson, J.D.: Thermal Spray and Weld Repair Alloy in the repair of Cavitation Damage in Turbines and Pumps:A Technical Note. J. Therm. Spray Technol. 14, 177–182 (2005)

    Article  Google Scholar 

  126. Steen, W.M., Mazumdar, J.: Laser Material Processing, 4th edn. Springer, London, UK (2010)

    Book  Google Scholar 

  127. Liu, Q., Janardhana, M., Hinton, B., Brandt, M., Sharp, K.: Laser cladding as potential repair technology for damaged aircraft components. Int J Struct Integr. 2(3), 314–321 (2011)

    Article  Google Scholar 

  128. Van Rooyen, C., Berger, H., and Theron, M.: Laser cladding crack repair of austenitic stainless steel, Proc. 5th Int. Conf. WLT-Conf. on Lasers in Manufacturing, Munich, (2009)

  129. Sexton, S., Lavin, S., Byrne, G., Kennedy, A.: Laser cladding of aerospace materials. J Mater Process Technol. 122(1), 63–68 (2002)

    Article  Google Scholar 

  130. Capello, E., Colombo, D., and Previtali, B.: Repairing of sintered tools using laser cladding by wire, J Mater Process Technol 164–165, 990–1000 (2005), 164-165

  131. Stewart, J., Wells, D.B., Scott, P.M., Bransden, A.S.: The prevention of IGSCC in sensitized stainless steel by laser surface melting. Corrosion. 46(8), 618–620 (1990)

    Article  Google Scholar 

  132. Anthony, T.R., Cline, H.E.: Surface normalization of sensitized stainless steel by laser surface melting. J Appl Phys. 49(3), 1248–1255 (1978)

    Article  Google Scholar 

  133. Mudali, U.K., Dayal, R.K.: Improving intergranular corrosion resistance of sensitized type 316 stainless steel by laser surface melting. J. Mater. Eng. Perform. 341–3465 (1992)

  134. Kwok, C.T., Lo, K.H., Chan, W.K., Cheng, F.T., Man, H.C.: Effect of laser surface melting on intergranular corrosion behavior of aged austenitic and duplex stainless steels. Corros Sci. 53(4), 1581–1591 (2011)

    Article  Google Scholar 

  135. Bao, G., Shinozaki, K., Iguro, S., Inkyo, M., Yamamoto, M., Mahara, Y., Watanabe, H.: Stress corrosion cracking sealing in overlaying of Inconel 182 of by laser surface melting. J Mater Process Technol. 173(3), 330–336 (2006)

    Article  Google Scholar 

  136. Zhang, Y.K., Ren, X.D., Zhou, J.Z., Lu, J.Z., Zhou, L.C.: Investigation of stress intensity factor changing on the hole crack subject to laser shock processing. Mater Des. 30(7), 2769–2773 (2009)

    Article  Google Scholar 

  137. Tumbull, A., Mingard, K., Lord, J.D., Roebuck, B., Tice, D.R., Mottershead, K.J., Fairweather, N.D., Bradbury, A.K.: Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corros Sci. 53(10), 3398–3415 (2011)

    Article  Google Scholar 

  138. Suryanarayana, C., and Norton, M.G.: X-ray Diffraction—A Practical Approach, Plenum Press, New York, 63–98(1998)

  139. ASM Handbook, Vol 6, Welding Brazing and Soldering, ASM international, 1993 http://www.asminternational.org: ISBN 0–87170–377-7(V.1)

  140. Stamm, H., Holzwarth, U., Boerman, D.J., Dos Santos, M.F., Olchini, A., Zausch, R.: Effect of laser surface treatment on high cycle fatigue of AISI, 316L stainless steel. Fatigue Fract Eng Mater Struct. 19(8), 985–995 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mr. P.S. Hedaoo, K.S. Deohare, and Ram Nihal of RRCAT, for their technical help in assembling laser pump heads and preparation of sample jigs for the experiments. Author RS would like to thank Dr. C. Sudha, IGCAR for her useful suggestions to enrich the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundar R.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R, S., P, G., Gupta, R.K. et al. Laser Shock Peening and its Applications: A Review. Lasers Manuf. Mater. Process. 6, 424–463 (2019). https://doi.org/10.1007/s40516-019-00098-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-019-00098-8

Keywords

Navigation