Skip to main content
Log in

Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Svenungsson, J., Choquet, I., Kaplan, A.F.H.: Laser welding process – a review of keyhole welding modeling. Phys. Procedia. 78, 182–191 (2015)

    Article  Google Scholar 

  2. Ai, Y., Wang, J., Jiang, P., Liu, Y., Liu, W.: Parameters optimization and objective trend analysis for fiber laser keyhole welding based on Taguchi – FEA. Int. J. Adv. Manuf. Technol. 90, 1419–1432 (2017)

    Article  Google Scholar 

  3. Krishnan, R., Asundi, M.K.: Zirconium alloys in nuclear technology. Proc. Indian Acad. Sci. 4, 41–56 (1981)

    Google Scholar 

  4. R. Soni, P.N. Prasad, S. Vijayakumar, A.G. Chhatre and K.P. Dwivedi, “Fuel technology evolution for Indian PHWRs”, Nuclear Power Corporation of India Ltd., India. www.iaea.org/inis/collection/NCLCollectionStore/_Public/37/098/37098316.pdf

  5. Kim, S.S., Lee, J.W., Park, G., Koh, J.H.: Development of zircaloy-endplate welding technology for a DUPIC fuel bundle assembly. J. Nucl. Sci. Technol. 46(2), 103–108 (2009)

    Article  Google Scholar 

  6. Slobodyan, M.S.: Methods of creation of permanent zirconium alloy joints in Reactor Art: A Review. Tsvetnye Metally. 10, 91–98 (2016)

    Article  Google Scholar 

  7. R. Terrence Webster, “Welding of zirconium alloys”, ASM Handbook: Welding, Brazing, and Soldering (Editors: D.L. Olson, T.A. Siewert, S. Liu, and G.R. Edwards), Volume 6, pp.787-788 (1993).

  8. P. Rudling, A. Strasser and F. Garzarolli, “Welding of zirconium alloys’, Advanced Nuclear Technology International Krongjutarvagen 2C, SE-73 0 50 Skultuna. Sweden, (2007). https://www.antinternational.com/docs/samples/FM/11/First_chapter_-_ZIRAT12_STR_Welding_of_zirc_alloys.pdf

  9. David, S.A., Deb Roy, T.: Current issues and problems in welding science. Science. 257, 497–502 (1992)

    Article  Google Scholar 

  10. Deb Roy, T., David, S.A.: Physical processes in fusion welding. Rev. Mod. Phys. 67, 85–112 (1995)

    Article  Google Scholar 

  11. Rosenthal, D.: The theory of moving sources of heat and its application to metal treatments. Trans ASME. 68, 849–866 (1946)

    Google Scholar 

  12. Lax, M.: Temperature rise induced by a laser beam. J. Appl. Phys. 48, 3919–3924 (1977)

    Article  Google Scholar 

  13. Nissim, Y.I., Lietoila, A., Gold, R.B., Gibbons, J.F.: Temperature distributions produced in semiconductors by a scanning elliptical circular CW laser beam. J. Appl. Phys. 51, 274–279 (1980)

    Article  Google Scholar 

  14. Steen, W.M., Dowden, J., Davis, M., Kapadia, P.: A point and line source model of laser keyhole welding. J. Phys. D. 21, 1255–1260 (1988)

    Article  Google Scholar 

  15. Mackenzie, J.A., Robertson, M.L.: The numerical solution of one-dimensional phase change problems using an adaptive moving mesh method. J. Comput. Phys. 161, 537–557 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wei, P.S., Yeh, J.S., Ting, C.N., Debroy, T., Chung, F.K., Lin, C.L.: The Effects of Prandtl Number on Wavy Weld Boundary. Int. J. Heat Mass Transf. 52, 3790–3798 (2009)

    Article  MATH  Google Scholar 

  17. Du, H., Hu, L., Liu, J., Hu, X.: A study on the metal flow in full penetration laser beam welding for titanium alloy. Comput. Mater. Sci. 29, 419–427 (2004)

    Article  Google Scholar 

  18. Cho, W., Na, S., Thomy, C., Vollertsen, F.: Numerical simulation of molten pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212, 262–275 (2012)

    Article  Google Scholar 

  19. Robert, A., Debroy, T.: Geometry of laser spot welds from dimensionless numbers. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 32, 941–947 (2001)

    Article  Google Scholar 

  20. X.H. Ye, and X. Chen, “Three-dimensional variable-property modeling of laser full-penetration welding characteristics”, Progress in Computational Fluid Dynamics, Vol. 2, pp. 106–113 (2002).

  21. Sahin, S., Toparli, M., Ozdemir, I., Sasaki, S.: Modeled and measured residual stresses in a bi-material joint. J. Mater. Process. Technol. 132, 235–241 (2003)

    Article  Google Scholar 

  22. Josefson, B.L.: Prediction of residual stresses and distortions in welded structures. Trans ASME J. Offshore Mech. Arct. Eng. 115, 52–57 (1993)

    Article  Google Scholar 

  23. A.M. Kamara, W. Wang, S. Marimuthu, A.J. Pinkerton and L. Li, “Influence of melt pool convection on residual stress induced in laser cladding and powder deposition,” Proceeding of the 4th Pacific International Conference on Applications of Lasers and Optics (PICALO 2010), Paper No. 604 (2010).

  24. S. Safdar, A.J. Pinkerton, R. Moat, L. Li, M.A. Sheikh, M. Preuss and P.J. Withers, “An anisotropic enhanced thermal conductivity approach for modelling laser melt pools,” Proceeding of the 26th International Congress on Applications of Lasers and Electro-Optics (ICALEO 2007), Paper No. 1305, pp. 665–673 (2007).

  25. Marimuthu, S., Eghlio, R.M., Pinkerton, A.J., Li, L.: “Coupled computational fluid dynamic and finite element multiphase modeling of laser weld bead geometry formation and joint strengths”, Paper No: MANU-11-1292, Journal of Manufacturing Science and Engineering. Vol. 135, 011004 (2013). https://doi.org/10.1115/1.4023240

    Google Scholar 

  26. Goldak, J., Chakravarti, A., Bibby, M.: A new finite element model for welding heat sources. Metall. Trans. B. 15, 299–305 (1984)

    Article  Google Scholar 

  27. Goldak, J., Bibby, M., Moore, J., House, R., Patel, B.: Computer modeling of heat flow in welds. Metall. Trans. B. 17, 587–600 (1986)

    Article  Google Scholar 

  28. C.S. Wu, H.G. Wang and Y.M. Zhang, “A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile”, Welding Journal, pp 284-291 (2006). files. aws.org/wj/supplement/wj1206-284.pdf

  29. Fluent, ANSYS 16 V User’s Guide, ANSYS Inc.

  30. Voller, V.R., Prakash, C.: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 30, 1709–1719 (1987). https://doi.org/10.1016/0017-9310(87)90317-6

    Article  Google Scholar 

  31. Brent, A.D., Voller, V.R., Reid, K.J.: Enthalpy –porosity technique for modeling convection-diffusion phange change: Application to the melting of a pure metal. Numer. Heat Transfer. 13, 297–318 (1988)

    Article  Google Scholar 

  32. Jalali, A., Najafi, A.F.: Numerical modeling of the solidification phase change in a pipe and evaluation of the effect of boundary conditions. Journal of Thermal Science. 19, 419–424 (2010). https://doi.org/10.1007/s11630-010-0403-z

    Article  Google Scholar 

  33. Frewin, M.R., Scott, D.A.: Finite element model of pulsed laser welding. Weld. J. 78, 15s–22s (1999)

    Google Scholar 

  34. T. A. Palmer, B. Wood, J. W. Elmer, C. Westrich, J. O. Milewski, M. Piltch, M. Barbe, R. Carpenter, “Characterization of Stainless Steel and Refractory Metal Welds Made Using a Diode-Pumped, Continuous Wave Nd: YAG Laser”, UCRL-ID-146005, U.S. Department of Energy, Lawrence Livermore National Laboratory, Livermore, CA (October 19, 2001) https://e-reports-ext.llnl.gov/pdf/244384.pdf

  35. B.C. Wood, T.A. Palmer and J.W. Elmer, “Comparison between keyhole weld model and laser welding experiments”, UCRL-ID-150357, U.S. Department of Energy, Lawrence Livermore National Laboratory, Livermore (September 23, 2002). https://e-reports-ext.llnl.gov/pdf/245608.pdf

  36. R. Rai, “Modeling of heat transfer and fluid flow in keyhole welding”, Ph. D. Thesis, The Pennsylvania State University (2008). https://etda.libraries.psu.edu/files/final_submissions/5347

  37. Han, Q., Kim, D., Kim*, D., Lee, H., Kim, N.: Laser pulsed welding in thin sheets of Zircaloy-4. J. Mat. Process. Technol. 212, 1116–1122 (2012)

    Article  Google Scholar 

  38. De, A., Maiti, S.K., Walsh, C.A., Bhadeshia, H.K.D.H.: Finite element simulation of laser spot welding. Sci. Technol. Weld. Join. 8(5), 377–384 (2003)

    Article  Google Scholar 

  39. Paradis, P.-F., Rhim, W.-K.: Thermo-physical properties of zirconium at high temperature. J. Mater. Res. 14, 3713–3719 (1999). https://doi.org/10.1557/JMR.1999.0501

    Article  Google Scholar 

  40. “Thermo-physical properties of materials for nuclear engineering: A tutorial and collection of data”, ISBN 978–92–0–106508–7, International Atomic Energy Agency, Vienna, (2008).

  41. Sahiti, M., Raghavendra Reddy, M., Budi, J., Peter Praveen, J., Nageswara Rao, B.: Optimum WEDM process parameters of Incoloy®Alloy800 using Taguchi method. Int. J. Ind. Manuf. Syst. Eng. 1(3), 64–68 (2016)

    Google Scholar 

  42. Bharathi, P., Priyanka, T.G.L., Srinivasa Rao, G., Nageswara Rao, B.: Optimum WEDM process parameters of SS304 using Taguchi method. Int. J. Ind. Manuf. Syst. Eng. 1(3), 69–72 (2016)

    Google Scholar 

  43. Rajeev Kumar, D., Varma, P.S.S.K., Nageswara Rao, B.: Optimum drilling parameters of coir fiber-reinforced polyester composites. Am. J. Mech. Ind. Eng. 2(2), 92–97 (2017)

    Google Scholar 

  44. Konduri, S.S.S., Manideep Kumar Kalavala, V.D.S.R., Mandala, P., Manapragada, R.R., Nageswara Rao, B.: Application of Taguchi approach to seek optimum drilling parameters for woven fabric carbon fibre/epoxy laminates. MAYFEB J. Mech. Eng. 1, 29–37 (2017)

    Google Scholar 

  45. Dutta, O.Y., Nageswara Rao, B.: Investigations on the performance of chevron type plate heat exchangers. Heat Mass Transfer. https://doi.org/10.1007/s00231-017-2107-3

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable suggestions to improve the clarity of presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageswara Rao Boggarapu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyanarayana, G., Narayana, K.L. & Boggarapu, N.R. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly. Lasers Manuf. Mater. Process. 5, 53–70 (2018). https://doi.org/10.1007/s40516-018-0053-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-018-0053-7

Keywords

Navigation