Skip to main content
Log in

A Modeling Approach for Plastic-Metal Laser Direct Joining

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mian, A., Newaz, G., Vendra, L., Rahman, N., Georgiev, D.G., Auner, G., Witte, R., Herfurth, H.: Laser bonded microjoints between titanium and polyimide for applications in medical implants. J. Mater. Sci.: Mater. Med. 16(3), 229–237 (2005)

    Google Scholar 

  2. Katayama, S., Kawahito, Y.: Laser direct joining of metal and plastic. Scr. Mater. 59(12), 1247–1250 (2008)

    Article  Google Scholar 

  3. Wang, X., Li, P., Xu, Z., Song, X., Liu, H.: Laser transmission joint between PET and titanium for biomedical application. J. Mater. Process. Technol. 210(13), 1767–1771 (2010)

    Article  Google Scholar 

  4. Chan, C.W., Smith, G.: Fibre laser joining of highly dissimilar materials: Commercially pure Ti and PET hybrid joint for medical device applications. Mater. Des. 103, 278–292 (2016)

    Article  Google Scholar 

  5. Wahba, M., Kawahito, Y., Katayama, S.: Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate. J. Mater. Process. Technol. 211(6), 1166–1174 (2011)

    Article  Google Scholar 

  6. Tillmann, W., Elrefaey, A., Wojarski, L.: Toward process optimization in laser welding of metal to polymer. Mater. Werkst. 41(10), 879–883 (2010)

    Article  Google Scholar 

  7. Fortunato, A., Cuccolini, G., Ascari, A., Orazi, L., Campana, G., Tani, G.: Hybrid metal-plastic joining by means of laser. Int. J. Mater. Form. 3 (S1), 1131–1134 (2010)

    Article  Google Scholar 

  8. Holtkamp, J., Roesner, A., Gillner, A.: Advances in hybrid laser joining. Int. J. Adv. Manuf. Technol. 47(9-12), 923–930 (2010)

    Article  Google Scholar 

  9. Jung, K., Kawahito, Y., Katayama, S.: Laser direct joining of carbon fibre reinforced plastic to stainless steel. Sci. Technol. Weld. Join. 16(8), 676–680 (2011)

    Article  Google Scholar 

  10. Yusof, F., Yukio, M., Yoshiharu, M., Abdul Shukor, M.H.: Effect of anodizing on pulsed Nd:YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052). Mater. Des. 37, 410–415 (2012)

    Article  Google Scholar 

  11. Jung, K., Kawahito, Y., Takahashi, M., Katayama, S.: Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel. Mater. Des. 47, 179–188 (2013)

    Article  Google Scholar 

  12. Rodríguez-Vidal, E., Sanz, C., Soriano, C., Leunda, J., Verhaeghe, G.: Effect of metal micro-structuring on the mechanical behavior of polymer-metal laser T-joints. J. Mater. Process. Technol. 229, 668–677 (2016)

    Article  Google Scholar 

  13. Engelmann, C., Eckstaedt, J., Olowinsky, A., Aden, M., Mamuschkin, V.: Experimental and simulative investigations of laser assisted plastic-metal-joints considering different load directions. Phys. Procedia 83, 1118–1129 (2016)

    Article  Google Scholar 

  14. Wang, X., Song, X., Jiang, M., Li, P., Hu, Y., Wang, K., Liu, H.: Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology. Opt. Laser Technol. 44(3), 656–663 (2012)

    Article  Google Scholar 

  15. Ilie, M., Kneip, J.C., Matteï, S., Nichici, A., Roze, C., Girasole, T.: Through-transmission laser welding of polymers – temperature field modeling and infrared investigation. Infrared Phys. Technol. 51(1), 73–79 (2007)

    Article  Google Scholar 

  16. Acherjee, B., Kuar, A.S., Mitra, S., Misra, D.: Modeling of laser transmission contour welding process using FEA and DoE. Opt. Laser Technol. 44 (5), 1281–1289 (2012)

    Article  Google Scholar 

  17. Wang, X., Chen, H., Liu, H.: Investigation of the relationships of process parameters, molten pool geometry and shear strength in laser transmission welding of polyethylene terephthalate and polypropylene. Mater. Des. 55, 343–352 (2014)

    Article  Google Scholar 

  18. Schricker, K., Stambke, M., Bergmann, J.P.: Experimental investigations and modeling of the melting layer in polymer-metal hybrid structures. Weld. World 59(3), 407–412 (2015)

    Article  Google Scholar 

  19. Njihia, F., Ikua, B.W., Niyibizi, A.: Modeling of temperature distribution laser assisted metal-plastic (LAMP) joining process. In: Proceedings of Sustainable Research and Innovation Conference, pp. 275–279 (2016)

  20. Cheon, J., Na, S.J.: Relation of joint strength and polymer molecular structure in laser assisted metal and polymer joining. Sci. Technol. Weld. Join. 19(8), 631–637 (2014)

    Article  Google Scholar 

  21. Prentice, J.S.C.: Optical generation rate of electron-hole pairs in multilayer thin-film photovoltaic cells. J. Phys. D: Appl. Phys. 32(17), 2146–2150 (1999)

    Article  Google Scholar 

  22. Centurioni, E.: Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44(35), 7532–7539 (2005)

    Article  Google Scholar 

  23. Karlsson, B., Ribbing, C.G.: Optical constants and spectral selectivity of stainless steel and its oxides. J. Appl. Phys. 53(9), 6340–6346 (1982)

    Article  Google Scholar 

  24. Palik, E.D. (ed.): Handbook of optical constants of solids. Academic Press, San Diego (1998)

    Google Scholar 

  25. Hu, Y., Prattipati, V., Hiltner, A., Baer, E., Mehta, S.: Improving transparency of stretched PET/MXD6 blends by modifying PET with isophthalate. Polymer 46(14), 5202–5210 (2005)

    Article  Google Scholar 

  26. Samperi, F., Puglisi, C., Alicata, R., Montaudo, G.: Thermal degradation of poly(butylene terephthalate) at the processing temperature. Polym. Degrad. Stab. 83(1), 11–17 (2004)

    Article  Google Scholar 

  27. Pompe, G., Häußler, L, Winter, W.: Investigations of the equilibrium melting temperature in PBT and PC/PBT blends. J. Polym. Sci. Part B: Polym. Phys. 34(2), 211–219 (1996)

    Article  Google Scholar 

  28. Samperi, F., Puglisi, C., Alicata, R., Montaudo, G.: Thermal degradation of poly(ethylene terephthalate) at the processing temperature. Polym. Degrad. Stab. 83(1), 3–10 (2004)

    Article  Google Scholar 

  29. Wang, Y., Gao, J., Ma, Y., Agarwal, U.S.: Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. Compos. Part B: Eng. 37(6), 399–407 (2006)

    Article  Google Scholar 

  30. Zhang, X., Li, Y., Lv, G., Zuo, Y., Mu, Y.: Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites. Polym. Degrad. Stab. 91(5), 1202–1207 (2006)

    Article  Google Scholar 

  31. Sengupta, R., Sabharwal, S., Bhowmick, A.K., Chaki, T.K.: Thermogravimetric studies on Polyamide-6,6 modified by electron beam irradiation and by nanofillers. Polym. Degrad. Stab. 91(6), 1311–1318 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian H. A. Lutey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutey, A.H.A., Fortunato, A., Ascari, A. et al. A Modeling Approach for Plastic-Metal Laser Direct Joining. Lasers Manuf. Mater. Process. 4, 136–151 (2017). https://doi.org/10.1007/s40516-017-0042-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-017-0042-2

Keywords

Navigation