Skip to main content
Log in

Laser Printing of PCL/Progesterone Tablets for Drug Delivery Applications in Hormone Cancer Therapy

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In this study, polycaprolactone (PCL) and progesterone (PG) tablets were produced by selective laser sintering (SLS) using different particle sizes and laser energy. The sintered PCL/PG tablets presented uniform morphology, coalescence of particles and interconnected pores distributed in the polymeric matrix. The EDS analysis confirmed the presence of progesterone recrystallized on the surface of the porous PCL matrix. The crystallinity values for the PCL/PG tablets were lower than that for the pure PCL, suggesting the interaction of components at the molecular level. The PCL/PG tablets fabricated with small particles and high laser energy presented a higher value for the flexural modulus compared with the other specimens. The glass transition temperature (Tg) was −37 °C for the PCL/PG tablet with a high degree of sintering. The fatigue test showed that the PCL/PG blend tablets have high fatigue strength. The drug release mechanism of all tablets studied followed a zero-order kinetics, and drug release rates were dependent on sintering degree and, consequently, on matrix erosion, showing a potential application to controlled drug delivery in hormone cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Leong, K.F., Chua, C.K., Sudarmadji, N., Yeong, W.Y.: Engineering functionally-graded tissue engineering scaffolds. J. Mech. Behav. Biomed. Mater. 1(2), 140–152 (2008)

    Article  Google Scholar 

  2. Salmoria, G.V., Leite, J.L., Paggi, R.A.: The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering. Polym. Test. 28(7), 746–751 (2009) Leite, J.L.

    Article  Google Scholar 

  3. Salmoria, G.V., Leite, J.L., Vieira, L.F., Pires, A.T.N., Roesler, C.R.M.: Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering. Polym. Test. 31(3), 411–416 (2012)

    Article  Google Scholar 

  4. Low, K.H., Leong, K.F., Chua, C.K., Du, Z.H., Cheach, C.M.: Characterization of SLS parts for drug delivery devices. Rapid Prototyp. J. 7(5), 262–267 (2001)

    Article  Google Scholar 

  5. Leong, K.F., Phua, K.K.S., Chua, C.K., Du, Z.H., Teo, K.O.M.: Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc. Instn. Mech. Engrs: Part H (J. Eng. Med.) 215, 191–201 (2001)

    Article  Google Scholar 

  6. Cheah, C.M., Leong, K.F., Chua, C.K., Low, K.H., Quek, H.S.: Characterization of micro-features in selective laser sintered drug delivery devices. Proc. Inst. Mech. Eng. H. 216, 369–383 (2002)

    Article  Google Scholar 

  7. Yeong, W.Y., Chua, C.K., Leong, K.F., Chandrasekaran, M.: Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22, 643–652 (2004)

    Article  Google Scholar 

  8. Leong, K.F., Chua, C.K., Gui, W.S., Verani, W.S.G.: Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int. J. Adv. Manuf. Technol. 31(5), 483–489 (2006)

    Article  Google Scholar 

  9. Leong, K.F., Wiria, F.E., Chua, C.K., Li, S.H.: Characterization of a poly-epsiloncaprolactone polymeric drug delivery device built by selective laser sintering. Biomed. Mater. Eng. 17(3), 147–157 (2007)

    Google Scholar 

  10. Salmoria, G.V., Klauss, P., Zepon, K., Kanis, L.A., Roesler, C.R.M., Vieira, L.F.: Development of functionally-graded reservoir of PCL/PG by selective laser sintering for drug delivery devices. Virtual Phys. Prototyp. 7(2), 107–115 (2012)

    Article  Google Scholar 

  11. Salmoria, G.V., Cardenuto, M.R., Roesler, C.R.M., Zepon, K.M., Kanis, L.A.: PCL/ibuprofen implants fabricated by selective laser sintering for orbital repair. Procedia CIRP. 49, 188–192 (2016)

    Article  Google Scholar 

  12. Salmoria, G.V., Hotza, D., Klauss, P., Kanis, L.A., Roesler, C.R.M.: Manufacturing of porous Polycaprolactone prepared with different particle sizes and infrared laser sintering conditions: microstructure and mechanical properties. Adv. Mech. Eng. 2014, art. no. 640496, (2014). doi:10.1155/2014/640496

  13. Leo, J.C., Wang, S.M., Guo, C.H., Aw, S.E., Zhao, Y., Li, J.M., Hui, K.M., Lin, V.C.: Gene regulation profile reveals consistent anticancer properties of progesterone in hormone-independent breast cancer cells transfected with progesterone receptor. Int. J. Cancer. 117(4), 561–568 (2005)

    Article  Google Scholar 

  14. Gittard, S.D., Narayan, R.J.: Laser direct writing of micro- and nano-scale medical devices. Expert Rev. Med. Devices. 7(3), 343–356 (2010)

    Article  Google Scholar 

  15. Duan, B., Wang, M.: Selective laser sintering and its application in biomedical engineering. MRS Bull. 36(12), 998–1005 (2011)

    Article  Google Scholar 

  16. Shishkovsky, I.: Hysteresis modeling of porous SMA for drug delivery system designed and fabricated by the laser-assisted sintering. MRS Proc. 1569, 141–147 (2013). doi:10.1557/opl.2013.838

    Article  Google Scholar 

  17. Volyanskii I., Shishkovsky I.V.: Laser-assisted 3D printing of functional graded structures from polymer covered Nanocomposites: a self-review. Chapter 11 in "New trends in 3D printing", book edited by Igor V Shishkovsky, ISBN 978-953-51-2480-1, Print ISBN 978-953-51-2479-5, (2016) doi:10.5772/63565

  18. Li, Y., Zhang, Y.S., Akpek, A., Shin, S.R., Khademhosseini, A.: 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication. 9(1), 1–9 (2016). doi:10.1088/1758-5090/9/1/012001

    Article  Google Scholar 

  19. Zheng, Z.Y., Bay, B.H., Aw, S.E., Lin, V.C.: A novel antiestrogenic mechanism in progesterone receptor-transfected breast cancer cells. J. Biol. Chem. 280(17), 17480–17487 (2005)

    Article  Google Scholar 

  20. Sumida T, Itahana Y, Hamakawa H, Desprez PY. (2004) Reduction of human metastatic breast cancer cell aggressiveness on introduction of either form a or b of the progesterone receptor and then treatment with progestins. Cancer Res. 1;64(21):7886–92

  21. McDonnel AC, Van Kirk EA, Isaak DD, Murdoch WJ. (2005) Effects of progesterone on ovarian tumorigenesis in xenografted mice. Cancer Lett. 18;221(1):49–53

  22. MacDonald, R.G., Okulicz, W.C., Leavitt, W.W.: Progesterone-induced inactivation of nuclear estrogen receptor in the hamster uterus is mediated by acid phosphatase. Biochem. Biophys. Res. Commun. 104(2), 570–576 (1982)

    Article  Google Scholar 

  23. Lin, M.F., Kawachi, M.H., Stallcup, M.R., Grunberg, S.M., Lin, F.F.: Growth inhibition of androgen-insensitive human prostate carcinoma cells by a 19-norsteroid derivative agent, mifepristone. Prostate. 26(4), 194–204 (1995)

    Article  Google Scholar 

  24. Trunnell, J.B., Duffy, B.J., Marshall, V., Whitmore, W.F., Woodard, H.Q.: The use of progesterone in treatment of cancer of the prostate. J. Clin. Endocrinol. Metabol. (1951). 11(7), 663–676 (1951)

    Article  Google Scholar 

  25. Li, Y.X., Feng, X.D.: Biodegradable polymeric matrix for longacting and zero-order release drug delivery systems. Makromol. Chem. 33, 253–264 (1990)

    Article  Google Scholar 

  26. Lopes, C.M., Lobo, J.M.S., Costa, P.: Modified release of drug delivery systems: hydrophilic polymers. Rev. Bras. Cienc. Farm. 41, 143–154 (2005)

    Article  Google Scholar 

  27. Siepmann, J., Göpferich, A.: Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev. 48, 229–247 (2001)

    Article  Google Scholar 

  28. Klose, D., Siepmann, F., Elkharraz, K., Krenzlin, S., Siepmann, J.: How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int. J. Pharm. 314, 198–206 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PRONEX/FAPESC, CNPQ and FINEP for financial support and the Center of Microscopy-UFSC for providing the micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Salmoria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmoria, G.V., Klauss, P. & Kanis, L.A. Laser Printing of PCL/Progesterone Tablets for Drug Delivery Applications in Hormone Cancer Therapy. Lasers Manuf. Mater. Process. 4, 108–120 (2017). https://doi.org/10.1007/s40516-017-0040-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-017-0040-4

Keywords

Navigation