Skip to main content
Log in

Nd:YAG Laser Damage of Graphene–Nickel Interfaces

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In this work we investigate the damage induced on a graphene–nickel interface after the exposure to Nd:YAG infrared laser radiation. The damage threshold has been experimentally determined. We observe that once the fluence exceeds the threshold value, both the morphology and the physical–chemical properties of the samples change. This has been verified by scanning probe microscopes measurements and near edge x-ray absorption fine structure spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh, R.S., Nalla, V., Chen, W., Wee, A.T.S., Ji, W.: Laser patterning of epitaxial graphene for Schottky junction photodetectors. ACS Nano 7, 5969–5975 (2011)

    Article  Google Scholar 

  2. Trusovas, R., Ratautas, K., Račiukaitis, G., Barkauskas, J., Stankevičiene, I., Niaura, G., Mažeikiene, R.: Reduction of graphite oxide to graphene with laser irradiation. Carbon 52, 574–582 (2013)

    Article  Google Scholar 

  3. Santos, A., Deen, M.J., Marsal, L.F.: Low–cost fabrication technologies for nanostructures: state–of–the–art and potential. Nanotechnology 26(4), 042001 (2015)

    Article  Google Scholar 

  4. Lee, J.M., Lee, J.H., Han, J.H., Yoo, J.B., Lee, J.H., Cho, S., Kwon, S.J., Cho, E.S.: Nd:YVO4 laser ablation of graphene films on glass and poly(ethylene terephthalate) substrates. Jpn. J. Appl. Phys. 53, 08NL02 (2014)

    Article  Google Scholar 

  5. Sokolov, D.A., Sheppered, K.R., Orlando, T.M.: Formation of graphene features from direct laser-induced reduction of graphite oxide. Chem. Phys. Lett. 21, 2633–2636 (2010)

    Article  Google Scholar 

  6. Zhang, Y.L., Guo, L.G., Xia, H., Chen, Q.D., Feng, J., Sun, H.B.: Photoreduction of graphene oxides: methods, properties, and applications. Adv. Opt. Mater 2, 10–28 (2014)

    Article  Google Scholar 

  7. Trusovas, R., Ratautas, K., Račiukaitis, G., Barkauskas, J., Stankevičiene, I., Niaura, G., Mažeikiene, R.: Reduction of graphite oxide to graphene with laser irradiation. Carbon 52, 574–582 (2013)

    Article  Google Scholar 

  8. Ghadim, E.E., Rashidi, N., Kimiagar, S., Akhavan, O., Manouchehri, F., Ghaderi, E.: Pulsed laser irradiation for environment friendly reduction of graphene oxide suspensions. App. Surf. Sci. 301, 183–188 (2014)

    Article  Google Scholar 

  9. Feng, P., Zhang, N., Wu, H., Zhu, X.: Effect of ambient air on femtosecond laser ablation of highly oriented pyrolytic graphite. Opt. Lett. 40(1), 17–20 (2014)

    Article  Google Scholar 

  10. Suman, M., Monaco, G., Zuppella, P., Nicolosi, P., Pelizzo, M.G., Ferrari, F., Lucchini, M., Nisoli, M.: Analysis of the damage effect of femtosecond-laser irradiation on extreme ultraviolet Mo/Si multilayer coating. Thin Solid Films 520(6), 2301–2306 (2012)

    Article  Google Scholar 

  11. Juha, L., Haykova, V., Chalupsky, J., Vorlicek, V., Ritucci, A., Reale, A., Zuppella, P., Stormer, M.: Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold. J. Appl. Phys. 105(9), 093117 (2009)

    Article  Google Scholar 

  12. Kiisk, V., Kahro, T., Kozlova, J., Matisen, L., Alles, H.: Nanosecond laser treatment of graphene. Appl. Surf. Sci. 276, 133–137 (2013)

    Article  Google Scholar 

  13. Frolov, V.D., Pivovarov, P.A., Zavedeev, E.V., Khomich, A.A., Grigorenko, A.N., Konov, V.I.: Laser–induced local profile transformation of multilayered graphene on a substtrate. Opt. Laser Technol. 69, 34–38 (2015)

    Article  Google Scholar 

  14. Xu, Z., Buehler, J.: Interface structure and mechanics between graphene and metal substrates: a first–principles study. J. Phis.: Condens. Matter 22, 485301 (2010)

    Google Scholar 

  15. Dahal, A., Batzill, M.: Graphene–nickel interfaces: a review. Nanoscale 6, 2548–2562 (2014)

    Article  Google Scholar 

  16. Naletto, G., Pelizzo, M.G., Tondello, G., Nannarone, S., Giglia, A.: The monochromator for the synchrotron radiation beamline X-MOSS at ELETTRA. Proc. SPIE 4145, 105 (2001)

    Article  Google Scholar 

  17. Nannarone, S., Borgatti, F., De Luisa, A., Doyle, B.P., Gazzadi, G.C., Giglia, A., Finetti, P., Mahne, N., Pasquali, L., Pedio, M., Selvaggi, G., Naletto, G., Pelizzo, M.G., Tondello, G.: The BEAR Beamline at ELETTRA. AIP Conf. Proc. 705, 450 (2004)

    Article  Google Scholar 

  18. Gao, W., Huang, R.: Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity. J. Mech. Phys. Solids 66, 42–58 (2014)

    Article  MathSciNet  Google Scholar 

  19. Yoon, D., Son, Y.W., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11, 3227–3231 (2011)

    Article  Google Scholar 

  20. Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Article  Google Scholar 

  21. Pacilé, D., Papagno, M., Rodríguez, A.F., Grioni, M., Papagno, L.: Near–edge x–ray absorption fine–structure investigation of graphene. Phys. Rev. Lett. 101, 066806 (2008)

    Article  Google Scholar 

  22. Pacilé, D., Meyer, J.C., Fraile Rodríguez, A., Papagno, M., Gómez–Navarro, C., Sundaram, R.S., Burghard, M., Kern, K., Carbone, C., Kaiser, U.: Electronic properties and atomic structure of graphene oxide membranes. Carbon 49, 966–972 (2011)

    Article  Google Scholar 

  23. Watts, B., Thomsen, L., Dastoor, P.C.: Methods in carbon K–edge NEXAFS: experiment and analysis. J. Electron Spectr. Rel Phenom. 151, 105–120 (2006)

    Article  Google Scholar 

  24. Schultz, B.J., Patridge, C.J., Lee, V., Jaye, C., Lysaght, P.S., Smith, C., Barnett, J., Fischer, D.A., Prendergast, D., Banerjee, S.: Imaging local electronic corrugations and doped regions in graphene. Nat. Commun. 2, 372 (2011)

    Article  Google Scholar 

  25. David, L., Feldman, A., Mansfield, E., Lehman, J., Singh, G.: Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings. Scientific Rep. 4, 4311 (2013)

    Google Scholar 

Download references

Acknowledgments

The NEXAFS measurements were performed at BEAR beamline–ELETTRA Synchrotron Trieste in the frame of the proposal N. 20140398 “GRAphene Oxide PHotoreductIon: properTies at the interfacE (GRAPHITE)” at BEAR beamline–ELETTRA Synchrotron Trieste. The authors thank Prof. S. Nannarone and Dr. A. Giglia for supporting the measurements campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Zuppella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuppella, P., Gerlin, F., Corso, A.J. et al. Nd:YAG Laser Damage of Graphene–Nickel Interfaces. Lasers Manuf. Mater. Process. 3, 131–139 (2016). https://doi.org/10.1007/s40516-016-0026-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-016-0026-7

Keywords

Navigation