Skip to main content
Log in

Effect of Non-plastic Fines Content and Gradation on the Liquefaction Response of Chlef Sand

  • Technical Paper
  • Published:
Transportation Infrastructure Geotechnology Aims and scope Submit manuscript

Abstract

This study explores the impact of non-plastic fines content, initial confining pressure, and grading characteristics on the undrained shear strength and excess pore pressure of sand-silt mixtures; a series of undrained compression triaxial tests were carried out on reconstituted Chlef sand (Algeria) samples with different percentages of silt content (Fc = 0, 5, 10, 15, and 20%), at an initial relative density (RD = 50%) subjected under three different confining pressures (pc = 20, 50, and 100 kPa). Observations from these tests unveiled intriguing insights. Notably, it was discovered that soil specimens with lower fines content and higher initial confining pressures showed increased resistance to liquefaction. Conversely, liquefaction resistance diminished under conditions of higher fines content and lower initial confining pressures. Moreover, the analysis of test results underscored the substantial influence of gradation on the peak shear strength and maximum excess pore pressure of sand-silt mixtures. This suggests that the distribution of particle sizes within the mixture plays a pivotal role in its mechanical behavior and susceptibility to liquefaction. Furthermore, the study’s findings revealed the presence of straightforward correlations between various parameters. These correlations include those between peak shear strength (qpeak), maximum excess pore pressure (Δumax), fines content (Fc), initial confining pressure (pc), and specific grading characteristics such as D10, D30, D50, D60, Cu, D10R, D50R, and CuR. These correlations offer valuable insights into the interplay of factors affecting the mechanical properties of sand-silt mixtures, aiding in the development of predictive models and engineering solutions for infrastructure projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

G s :

Specific gravity of solids

B :

Skempton’s coefficient

D 10 :

Effective grain size

D 10R :

Effective diameter ratio (D10R = D10sand/D10mixture)

D 30 :

Grain size corresponding to 30% finer

D 60 :

Grain size corresponding to 60% finer

D 50 :

Mean grain size

D 50R :

Mean grain size ratio (D50R = D50sand/D50mixture)

C u :

Uniformity coefficient (Cu = D60/D10)

C uR :

Uniformity coefficient ratio (CuR = Cusand/Cumixture)

C c :

Coefficient of gradation (Cc = (D30)2/(D10)x(D60))

D :

Diameter of the sample

e max :

Maximum void ratio

e min :

Minimum void ratio

e :

Initial void ratio

H :

Height of the sample

H/D :

Height to diameter ratio of the sample

RD:

Relative density

R 2 :

Coefficient of determination

p'c :

Initial effective confining pressure

q :

Deviator stress

q peak :

Peak shear strength

p':

Effective mean pressure

W L :

Liquid limit

W P :

Plastic limit

I P :

Plasticity index

F c :

Fines content

Δu max :

Maximum excess pore pressure

εa :

Axial strain

γd :

Dry unit weight of soil

References

  • Amini, F., Qi, G.Z.: Liquefaction testing of stratified silty sands. J Geotech Geoenv Eng, ASCE 126(3), 208–217 (2000)

    Article  Google Scholar 

  • Arab, A.: Monotonic and cyclic behaviour of silty sand. C. r. Mecanique 337, 621–631 (2009)

    Article  Google Scholar 

  • Belkhatir, M., Arab, A., Della, N., Missoum, H., Schanz, T.: Influence of intergranular void ratio on monotonic and cyclic undrained shear response of sandy soils. C.R. Mec. 338, 290–303 (2010a)

    Article  Google Scholar 

  • Belkhatir, M., Arab, A., Della, N., Missoum, H., Schanz, T.: Liquefaction resistance of Chlef river silty sand: effect of low plastic fines and other parameters. Acta Polytechnica Hungarica 7(2), 119–137 (2010b)

    Google Scholar 

  • Belkhatir, M., Arab, A., Schanz, T., Missoum, H., Della, N.: Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter 13(5), 599–609 (2011)

    Article  Google Scholar 

  • Belkhatir, M., Arab, A., Della, N., Schanz, T.: Experimental study of undrained shear strength of silty sand: effect of fines and gradation. Geotech. Geol. Eng 30(5), 1103–1118 (2012)

    Article  Google Scholar 

  • Belkhatir, M., Schanz, T., Arab, A., Della, N., Kadri, A.: Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotech. Test. J. 37(5), 922–931 (2014)

    Article  Google Scholar 

  • Benahmed, N., Nguyen, T.K., Hicher, P.Y., Maxime, N.: An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures. Eur. J. Environ. Civ. Eng. 19(1), 109–128 (2014)

    Article  Google Scholar 

  • Benali, N., Abdelkader, B., Eddine, B.D., Arab, A., Benessalah, I.: Laboratory investigation into the effect of fines plasticity on the mechanical behavior of sand/fines mixtures. Transp Infrastruct Geotechnol (2021). https://doi.org/10.1007/s40515-020-00144-5

    Article  Google Scholar 

  • Bensoula, M., Bousmaha, M., Missoum, H.: Relative density influence on the liquefaction potential of sand with fines. Revista de la Construcción. J. Constr 21(3), 692–702 (2022). https://doi.org/10.7764/RDLC.21.3.692

    Article  Google Scholar 

  • Bensoula, M., Missoum, H., Bendani, K.: Liquefaction potential sand-silt mixtures under static loading. Revista de la Construccion 17(2) (2018). https://doi.org/10.7764/rdlc.17.2.196

  • Bishop, A.W., Wesley, L.D.: A hydraulic triaxial apparatus for controlled stress path testing. Geotechnique 4, 657–670 (1975)

    Article  Google Scholar 

  • Bouferra, R., Shahrour, I.: Influence of fines on the resistance to liquefaction of a clayey sand. Ground Improvement 8(1), 1–5 (2004)

    Article  Google Scholar 

  • Bouri, D., Krim, A., Brahim, A., Arab, A.: Shear strength of compacted Chlef sand: Effect of water content, fines content and others parameters. Studia Geotech Et Mechan 42(1), 18–35 (2019). https://doi.org/10.2478/sgem-2019-0027

    Article  Google Scholar 

  • Bouri, D.E., Brahimi, A., Krim, A., Arab, A., Najser, J., Mašín, D.: Compression behaviour of Chlef sand and transition of fines content using pressure-dependent maximum void ratios of sand. Geotech. Geol. Eng. (2021). https://doi.org/10.1007/s10706-021-01985-8

    Article  Google Scholar 

  • Bouri, D., Krim, A., Brahimi, A., Belhassena, F.Z., Krim, A., Arab, A., Najser, J., Mašín, D.: Implementation of an advanced constitutive models for fine-grained soils. Geotech. Geol. Eng. (2023). https://doi.org/10.1007/s10706-023-02465-x

    Article  Google Scholar 

  • Boutaraa, Z., Arab, A., Chemmam, M., Brahimi, A.: Use of densification process to resolve soil deformation in Chlef city (Algeria)’. Arab. J. Geosci. (2020). https://doi.org/10.1007/s12517-020-06059-2

  • Brahim, A., Arab, A., Belkhatir, M., Shahrour, I.: Laboratory study of geotextiles performance on reinforced sandy soil. J. Earth Sci. 27(6), 1060–1070 (2016)

    Article  Google Scholar 

  • Brahim, A., Arab, A., Marwan, S., Shahrour, I.: Laboratory investigation of the influence of geotextile on the stress–strain and volumetric change behavior of sand. Geo. Tech. Geol. Eng. (2018). https://doi.org/10.1007/s10706-018-0446-6

    Article  Google Scholar 

  • Brahimi, A., Bouri, D.E., Boutaraa, Z., Nougar, B., Krim, A., Chemmam, M., Arab, A.: Numerical and experimental study on the effect of fiber reinforcement on the shear strength and hydraulic conductivity of Chlef soil. Innov Infrastruct Solutions (2022). https://doi.org/10.1007/s41062-022-01011-7

    Article  Google Scholar 

  • Chan, C.K.: Instruction manual, CKC E/P cyclic loading triaxial system user’s manual. Soil Engineering Equipment Company, San Francisco (1985)

  • Chang, N.Y., Yeh, S.T., Kaufman, L.P.: Liquefaction potential of clean and silty sands. Proceeding of the 3rd international earthquake microzonation conference. Seattle USA 2:1017–1032 (1982)

  • Cherif Taiba, A., Belkhatir, M., Kadri, A., Mahmoudi, Y., Schanz, T.: Insight into the effect of granulometric characteristics on the static liquefaction susceptibility of silty sand soils. Geotech. Geol. Eng. 34(1), 367–382 (2016)

    Article  Google Scholar 

  • Cherif Taiba, A., Mahmoudi, Y., Belkhatir, M., Kadri, A., Schanz, T.: Experimental characterization of the undrained instability and steady state of silty sand soils under monotonic loading conditions. Int. J. Geotech. Eng. 12(5), 513–529 (2018). https://doi.org/10.1080/19386362.2017.1302643

    Article  Google Scholar 

  • Ghani, S., Kumari, S.: (2021) Liquefaction study of fine-grained soil using computational model. Innov. Infrastruct. Solut. 6, 58 (2021). https://doi.org/10.1007/s41062-020-00426-4

    Article  Google Scholar 

  • Hussain, M., Sachan, A.: Dynamic characteristics of natural Kutch sandy soils, Soil Dynamics and Earthquake Engineering, Elsevier 125:105717 (2019a)

  • Hussain, M., Sachan, A.: Static liquefaction and effective stress path response of Kutch soils, Soils and Foundations, Elsevier, Vol. 59, No. 6, pp 2036-2055 (2019b)

  • Hussain, M., Sachan, A.: Dynamic behaviour of Kutch soils under cyclic triaxial and cyclic simple shear testing conditions. Int J Geotech Eng Taylor Francis 14(8), 902–918 (2020)

    Article  Google Scholar 

  • Janalizadeh, C.A., Ghalandarzadeh, A., Esmaeili, M.: Experimental study of the grading characteristics: effect on liquefaction resistance of various graded sands and gravelly sands. Arabian J. Geosci. 7(7), 2739–2748 (2013). https://doi.org/10.1007/s12517-013-0886-5

    Article  Google Scholar 

  • Kramer, S.L., Seed, H.B.: Initiation of soil liquefaction under static loading conditions. J. Geotech. Eng. 114(4), 412–430 (1988)

    Article  Google Scholar 

  • Krim, A., Arab, A., Bouferra, R., Sadek, M., Shahrour, I.: Characteristics of cyclic shear behaviour of sandy soils: a Laboratory study. Arab J. Sci. Eng. 41(10), 3995–4005 (2016)

    Article  Google Scholar 

  • Krim, A., Arab, A., Chemmam, M., Brahim, A., Sadek, M., Shahrour, I.: Experimental study on the liquefaction resistance of sand–clay mixtures: effect of clay content and grading characteristics. Mar. Georesour. Geotechnol. (2017). https://doi.org/10.1080/1064119X.2017.1407974

    Article  Google Scholar 

  • Krim, A., Brahimi, A., Arab, A., Bouri, D.E., Sadek, M.: A laboratory study of shear strength of partially saturated sandy soil. Geomech. Geoeng. (2021). https://doi.org/10.1080/17486025.2020.1864034

    Article  Google Scholar 

  • Kumar, D.R., Samui, P., Burman, A.: Determination of best criteria for evaluation of liquefaction potential of soil, transportation infrastructure geotechnology (2022). https://doi.org/10.1007/s40515-022-00268-w

  • Ladd, R.S.: Preparing test specimen using under compaction. Geotech Testing J GTJODJ 1, 16–23 (1978)

    Article  Google Scholar 

  • Lade, P.V., Yamamuro, J.A.: Effects of non-plastic fines on static liquefaction of sands. Canadian Geotech J 34, 918–928 (1997)

    Article  Google Scholar 

  • Mahmoudi, Y., Cherif Taiba, A., Belkhatir, M., Arab, A., Schanz, T.: Laboratory study on undrained shear behaviour of overconsolidated sand-silt mixtures: effect of the fines content and stress state. Int. J. Geotech. Eng. 12(2), 118–132 (2018). https://doi.org/10.1080/19386362.2016.1252140

    Article  Google Scholar 

  • Naeini, S.A., Baziar, M.H.: Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynam Earthquake Eng 24, 181–187 (2004)

    Article  Google Scholar 

  • Naeini, S.A.: The influence of silt presence and simple preparation on liquefaction potential of silty sands. Ph.D. dissertation. Iran University of Science and Technology: Tehran, Iran (2001)

  • Nougar, B., Bouri, D.E., Brahimi, A., Belhassena, F.Z., Arab, A.: Effect of plastic fine and non-plastic fine on the compressibility behavior of granular material. Arab. J. Geosci. (2022). https://doi.org/10.1007/s12517-022-10980-z

    Article  Google Scholar 

  • Thevanayagam, S.: Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenv Eng Div, ASCE 124(6), 479–491 (1998)

    Article  Google Scholar 

  • Vaid, Y.P., Fisher, J.M., Kuerbis, R.H.: Particle gradation and liquefaction. J Geotech Eng 116(4), 698–703 (1991)

    Article  Google Scholar 

  • Yamamuro, J.A., Lade, P.V.: Steady-state concepts and static liquefaction of silty sands. J Geotech Geoenv Eng, ASCE 124(9), 868–877 (1998)

    Article  Google Scholar 

  • Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., Kayabali, K.: Experimental investigation of the effect of grading characteristics on the liquefaction resistance of various graded sands. Eng Geol J 100, 91–100 (2008)

    Article  Google Scholar 

  • Yoshimine, M., Ishihara, K.: Flow potential of sand during liquefaction. Soils Found. 38(3), 189–198 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Chlef university authors thank the reviewers for their detailed remarks. Tests were performed in the Laboratory of Material Sciences and Environment (LsmE) at UHBC University of Chlef.

Author information

Authors and Affiliations

Authors

Contributions

Abdallah Krim: conceptualization; methodology; writing—original draft; investigation.

Abdelkader Brahimi: methodology, conceptualization, writing.

Djamel Eddine Bouri: writing—review and editing.

Benali Nougar: data curation, conceptualization.

Basma Lamouchi: data curation, conceptualization.

Ahmed Arab: conceptualization, supervision, methodology.

Corresponding author

Correspondence to Abdelkader Brahimi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krim, A., Brahimi, A., Bouri, D.E. et al. Effect of Non-plastic Fines Content and Gradation on the Liquefaction Response of Chlef Sand. Transp. Infrastruct. Geotech. (2024). https://doi.org/10.1007/s40515-024-00394-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40515-024-00394-7

Keywords

Navigation