Skip to main content

Evaluation of Expansive Soil Amended with Fly Ash and Liquid Alkaline Activator


This paper presents the use of fly ash (FA) and liquid alkaline activator (LAA) to amend the engineering behavior of expansive soil (ES) based on a series of unconfined compressive strength (UCS), expansion ratio (ER), California bearing ratio (CBR), and free swell index (FSI) tests conducted on various sets of natural and amended ES with different proportions of FA with LAA at different curing periods of 7, 14, and 28 days. Microstructure analysis was carried out by field emission scanning electron microscopy. This study also evaluates the performance of pavement subgrade with amended ES. The LAA is a mixture of 1.0 molar sodium metasilicate and 10.0 molars of sodium hydroxide solution mixed in the proportion of 70:30, respectively. The results indicate that ER and FSI decrease when FA content increases with optimum alkaline activator content (OLC) in the combination, whereas UCS and CBR values initially increase with an increase in FA content up to 25% and after which they decrease. It is also observed that, with an increase in curing periods, the ER and FSI decrease, whereas UCS and CBR values increase. Also, the flexible pavement’s total thickness and initial cost first decrease up to optimum FA content (25%) with OLC after that increases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data Availability

Not applicable



American Society for Testing and Materials


bituminous concrete


calcium aluminate silicate hydrate


California Bearing Ratio


inorganic clay of high plasticity


calcium silicate hydrate


dense bituminous macadam


effective California bearing ratio


expansion ratio


expansive soil


fly ash


field emission scanning electron microscopy


free swell index


granular sub-base

G. Base:

granular base


Indian standard


liquid alkaline activator


maximum total density


sodium aluminate silicate hydrate


optimum liquid alkaline activator


semi-dense bituminous concrete


unconfined compressive strength


  • Anupam, A. K., Kumar, P., Ransinchung, G. D.: Use of various agricultural and industrial waste materials in road construction. Procedia – Soc. Behav. Sci. 104, 264–273 (2013).

  • Anupam, A. K., Kumar, P., Ransinchung, G. D., Shah, Y.U.: Study on performance and efficacy of industrial waste materials in road construction: fly ash and bagasse ash. Airf. Highw. Pavements Sustain. – Proc. Int. Conf. Highw. Pavements Airf. Technol. 45–56 (2017).

  • Arulrajah, A., Kua, T.A., Phetchuay, C., Horpibulsuk, S., Mahghoolpilehrood, F., Disfani, M.M.: Spent coffee grounds-fly ash geopolymer used as an embankment structural fill material. J. Mater. Civ. Eng. 28, 1–8 (2017).

    Article  Google Scholar 

  • Arulrajah, A., Kua, T. A., Suksiripattanapong. C., Horpibulsuk, S., Shen, J. S.: Compressive strength and microstructural properties of spent coffee grounds-bagasse ash based geopolymers with slag supplements. J. Clean. Prod. 162, 1491-1501 (2017).

  • ASTM:C618-19A.: Standard specification for coal fly ash and raw or calcined natural pozzolan for use. (2020).

  • Asuri, S., Keshavamurthy, P.: Expansive soil characterisation: an appraisal. Ina. Lett. 1, 29–33 (2016).

    Article  Google Scholar 

  • Chindaprasirt, P., Chareerat, T., Hatanaka, S., Cao, T.: High-strength geopolymer using fine high-calcium fly ash. J. Mater. Civ. Eng. 23, 264–270 (2011).

    Article  Google Scholar 

  • Christopher, I., Onyebuchi, F., Okoronkwo, O.: Optimization of California bearing ratio of tropical black clay soil treated with cement kiln dust and metakaolin blend. Int. J. Pavement Res. Technol. 14, 655–67 (2020)

    Google Scholar 

  • Djellali, A., Houam, A., Saghafi, B., Hamdane, A.: Static analysis of flexible pavements over expansive soils. Int. J. Civ. Eng. (2016).

    Article  Google Scholar 

  • Etim, R. K., Attah, I.C., Ekpo, D.U., Usanga, I.N.: Evaluation on stabilization role of lime and cement in expansive black clay-oyster shell ash composite. Transp. Infrastruct. Geotech. (2021).

  • Gollakota, A.R.K., Volli, V., Shu, C.M.: Progressive utilisation prospects of coal fly ash: A review. Sci. Total Environ. 672, 951–989 (2019).

    Article  Google Scholar 

  • Gupta, C., Prasad, A.: Strength and durability of lime-treated jarosite waste exposed to freeze and thaw. J. Cold. Reg. Eng. 32, 1–11 (2018).

    MathSciNet  Article  Google Scholar 

  • IRC:37.: Tentative guidelines for the design of flexible pavements. Indian Roads Congress, New Delhi. (2012)

  • IS:1498.: Classification and identification of soils for general engineering purposes, Bureau of Indian Standard, New Delhi. (1970)

  • IS:2720 (Part 10).: Method of test for soils, determination of unconfined compression test. Bureau of Indian Standard, New Delhi. (1991)

  • IS:2720 (Part 16).: Methods of test for soils laboratory determination of California. bearing ratio test. Bureau of Indian Standard, New Delhi. (1987)

  • IS:2720 (Part 40).: Methods of test for soils determination of free swell index Bureau of Indian Standard, New Delhi. (1977)

  • IS:2720 (Part 8).: Method of test for soils, determination of water content-dry density relation using heavy compaction. Bureau of Indian Standard, New Delhi. (1983)

  • Johnson, M., Feng, S., Xu, W., Sheng, D., Borana, L.: Experimental study of compression behavior of Indian black cotton soil in oedometer condition. Int. J. Geosynth. Gr. Eng. 6, 1–13 (2020).

    Article  Google Scholar 

  • Kishor, R., Singh, V.P., Srivastava, R.K.: Mitigation of expansive soil by liquid alkaline activator using rice husk ash, sugarcane bagasse ash for highway subgrade. Int. J. Pavement Res. Technol. 19–24 (2021).

  • Krishna, U.S.R., Naga, C., Kumar, S.: A case study on maintenance of bituminous concrete pavement considering life cycle cost analysis and carbon footprint estimation. Int. J. Constr. Manag. 1–9 (2020).

  • Kumar, R. Srinivasa.: Pavement design. Hyderabad, India: Universities Press. (2013)

  • Kumar, B.R.P., Sharma, R.S.: Effect of fly ash on engineering properties. J. Geotech. Geoenviron. Eng. 130, 764–7 (2004).

    Article  Google Scholar 

  • Kumar, A., Walia, B.S., Bajaj, A.: Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. J. Mater. Civ. Eng. 19, 242–8 (2007).

    Article  Google Scholar 

  • Lekha, B.M., Sarang, G.: Effect of electrolyte lignin and fly ash in stabilizing black cotton soil. Transp. Infrastruct. Geotech. 87–101 (2015).

  • Liu, Z., Cai, C.S., Liu, F., Fan, F.: Feasibility study of loess stabilization with fly ash-based geopolymer. J. Mater. Civ. Eng. 28, 1–8 (2016).

    Article  Google Scholar 

  • Miao, S., Shen, Z., Wang, X., Luo, F., Huang, X., Wei, C.: Stabilization of highly expansive black cotton soils by means of geopolymerization. J. Mater. Civ. Eng. 29, 1–9 (2017).

    Article  Google Scholar 

  • Mosa, A. M., Taher, A. H., Al-jaberi, L. A.: Case studies in construction materials improvement of poor subgrade soils using cement kiln dust. Case Stud. Constr. Mater. 7, 138–143 (2017).

  • Murmu, A.L., Jain, A., Patel, A.: Mechanical properties of alkali activated fly ash geopolymer stabilized expansive clay. KSCE J. Civ. Eng. 23, 3875–3888 (2019).

    Article  Google Scholar 

  • Osinubi, K.J., Yohanna, P., Eberemu, A.O.: Cement modification of tropical black clay using iron ore tailings as admixture. Transp. Geotech. 5, 35–49 (2015).

    Article  Google Scholar 

  • Palomo, A.: Hydration kinetics in hybrid binders: Early reaction stages. Cem. Concr. Compos. 39, 82–92 (2013).

    Article  Google Scholar 

  • Panias, D., Giannopoulou, I.P., Perraki, T.: Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surfaces A. Physicochem Eng. Asp. 301, 246–54 (2007).

    Article  Google Scholar 

  • Parhi, P. S., Garanayak, L.: Stabilization of an expansive soil using alkali activated fly ash based geopolymer. Adv. Charact. Anal. Expans. Soils Rocks, Sustain. Civ. Infrastructures. 36-50 (2018).

  • Phummiphan, I., Horpibulsuk, S., Phoo-ngernkham, A.A., Shen, S.L.: Marginal lateritic soil stabilized with calcium carbide residue and fly ash geopolymers as a sustainable pavement base material. J. Mater. Civ. Eng. 26, 1–10 (2017).

    Article  Google Scholar 

  • Phummiphan, I., Horpibulsuk, S., Rachan, R., Arulrajah, A., Shen. S.L., Chindaprasirt, P.: High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J Hazard Mater. 341, 257–267 (2018).

  • Ranjan, G., Rao, A.S.R.: Basic and applied soil mechanics. Third Edit. New Age International (P) Ltd., Publishers, pp. 688–706 (2016)

  • Sukmak, P., Horpibulsuk, S., Shen, S.: Strength development in clay-fly ash geopolymer. Constr. Build. Mater. 40, 566–574 (2013)

    Article  Google Scholar 

  • Sukmak, P., Sukmak, G., Horpibulsuk, S., Setkit, M., Kassawat, S., Arulrajah, A.: Palm oil fuel ash-soft soil geopolymer for subgrade applications: strength and microstructural evaluation. Road Mater. Pavement Des. 20, 110–131 (2017).

    Article  Google Scholar 

  • Sukprasert, S., Hoy, M., Horpibulsuk, S., Arulrajah, A., Rashid, S.A., Nazir, R.: Fly ash based geopolymer stabilisation of silty clay / blast furnace slag for subgrade applications. Road Mater. Pavement Des. 1–15 (2019).

  • Suksiripattanapong, C., Horpibulsuk, S., Phetchuay, C., Suebsuk, J., Phoo-ngernkham, T., Arulrajah, A.: Water treatment sludge–calcium carbide residue geopolymers as nonbearing masonry units. J. Mater. Civ. Eng. 29, 04017095 (2017).

    Article  Google Scholar 

  • Yadav, A.K., Gaurav, K., Kishor, R., Suman, S.K.: Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. Int. J. Pavement. Res. Technol. 10, 254–261 (2017)

    Article  Google Scholar 

  • Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S.: A comprehensive review on the applications of coal fly ash. Earth-Sci Rev. 141, 105–121 (2015).

    Article  Google Scholar 

  • Zheng, J., Zhang, R., Yang, H.: Highway subgrade construction in expansive soil areas. J. Mater. Civ. Eng. 21, 154–62 (2009)

    Article  Google Scholar 

Download references


The authors wish to thank Geotechnical Engineering Laboratories MNNIT Allahabad, Prayagraj, Uttar Pradesh, India, for providing available resources. The authors are thankful to IIT Kanpur for providing the FESEM and XRF facility. The authors are also thankful to Prayagraj power generation company limited, Bara Prayagraj, Uttar Pradesh, India, for providing the fly ash to complete this research.

Author information

Authors and Affiliations



Roop Kishor: investigation, writing-original draft, visualization, methodology, formal analysis, writing—review and editing; V. P. Singh: Review, editing and supervision.

Corresponding author

Correspondence to Roop Kishor.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publication

Not applicable

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kishor, R., Singh, V.P. Evaluation of Expansive Soil Amended with Fly Ash and Liquid Alkaline Activator. Transp. Infrastruct. Geotech. (2022).

Download citation

  • Accepted:

  • Published:

  • DOI:


  • Expansive soil
  • Fly ash
  • Liquid alkaline activator
  • Pavement subgrade
  • Pavement thickness