Skip to main content
Log in

A possible solution to the which-way problem of quantum interference

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

It is commonly assumed that the observation of an interference pattern is incompatible with any information about the path taken by a quantum particle. Here we show that, contrary to this assumption, the experimentally observable effects of small polarization rotations applied in the slits of a double-slit experiment indicate that individual particles passing the slits before their detection in the interference pattern are physically delocalized with regard to their interactions with the local polarization rotations. The rate at which the polarization is flipped to the orthogonal state is a direct measure of the fluctuations of the polarization rotation angles experienced by each particle. Particles detected in the interference maxima experience no fluctuations at all, indicating a presence of exactly one-half of the particle in each slit, while particles detected close to the minima experience polarization rotations much larger than the local rotations, indicating a negative presence in one of the slits and a presence of more than one in the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

There is no data associated with the present manuscript. The results are purely analytical.

References

  1. Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature (London) 351, 111 (1991)

    Article  Google Scholar 

  2. Dürr, S., Nonn, T., Rempe, G.: Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature (London) 395, 33 (1998)

    Article  Google Scholar 

  3. Schwindt, P.D.D., Kwiat, P.G., Englert, B.-G.: Quantitative wave-particle duality and nonerasing quantum erasure. Phys. Rev. A 60, 4285 (1999)

    Article  Google Scholar 

  4. Schneider, M.B., LaPuma, I.A.: A simple experiment for discussion of quantum interference and which-way measurement. Am. J. Phys. 70, 266 (2002)

    Article  Google Scholar 

  5. Barbieri, M., Goggin, M.E., Almeida, M.P., Lanyon, B.P., White, A.G.: Complementarity in variable strength quantum non-demolition measurements. N. J. Phys. 11, 093012 (2009)

    Article  Google Scholar 

  6. Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  Google Scholar 

  7. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. Indiana Univ. Math. J. 17, 59 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frauchiger, D., Renner, R.: Quantum theory cannot consistently describe the use of itself. Nat. Commun. 9, 3711 (2018)

    Article  Google Scholar 

  9. Brukner, C.: A no-go theorem for observer-independent facts. Entropy 20, 350 (2018)

    Article  MathSciNet  Google Scholar 

  10. Tollaksen, J.: Pre- and post-selection, weak values and contextuality. J. Phys. A: Math. Theor. 40, 9033 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dressel, J., Agarwal, S., Jordan, A.N.: Contextual values of observables in quantum measurements. Phys. Rev. Lett. 104, 240401 (2010)

    Article  Google Scholar 

  12. Pusey, M.F.: Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113, 200401 (2014)

    Article  Google Scholar 

  13. Piacentini, F., Avella, A., Levi, M.P., Lussana, R., Villa, F., Tosi, A., Zappa, F., Gramegna, M., Brida, G., Degiovanni, I.P., Genovese, M.: Experiment investigating the connection between weak values and contextuality. Phys. Rev. Lett. 116, 180401 (2016)

    Article  Google Scholar 

  14. Vaidman, L.: Past of a quantum particle. Phys. Rev. A 87, 052104 (2013)

    Article  Google Scholar 

  15. Vaidman, L.: Tracing the past of a quantum particle. Phys. Rev. A 89, 024102 (2014)

    Article  Google Scholar 

  16. Danan, A., Farfurnik, D., Bar-Ad, S., Vaidman, L.: Asking photons where they have been. Phys. Rev. Lett. 111, 240402 (2013)

    Article  Google Scholar 

  17. Geppert-Kleinrath, H., Denkmayr, T., Sponar, S., Lemmel, H., Jenke, T., Hasegawa, Y.: Multifold paths of neutrons in the three-beam interferometer detected by a tiny energy kick. Phys. Rev. A 97, 052111 (2018)

    Article  Google Scholar 

  18. Sponar, S., Geppert, H., Denkmayr, T., Lemmel, H., Hasegawa, Y.: Asking neutrons where they have been. J. Phys.: Conf. Ser. 1316, 012002 (2019)

    Google Scholar 

  19. Qi, F., Wang, Z., Xu, W., Chen, X.-W., Li, Z.-Y.: Towards simultaneous observation of path and interference of a single photon in a modified Mach-Zehnder interferometer. Photon. Res. 8, 622 (2020)

    Article  Google Scholar 

  20. Dajka, J.: Faint trace of a particle in a noisy Vaidman three-path interferometer. Sci. Rep. 11, 1123 (2021)

    Article  Google Scholar 

  21. Griffiths, R.B.: Particle path through a nested Mach-Zehnder interferometer. Phys. Rev. A 94, 032115 (2016)

    Article  Google Scholar 

  22. Englert, B.G., Horia, K., Dai, J., Len, Y.L., Ng, H.K.: Past of a quantum particle revisited. Phys. Rev. A 96, 022126 (2017)

    Article  Google Scholar 

  23. Peleg, U., Vaidman, L.: Comment on “Past of a quantum particle revisited’’. Phys. Rev. A 99, 026103 (2019)

    Article  Google Scholar 

  24. Vaidman, Lev: Neutrons and photons inside a nested Mach-Zehnder interferometer. Phys. Rev. A 101, 052119 (2020)

    Article  Google Scholar 

  25. Correa, R., Saldanha, P.L.: Apparent quantum paradoxes as simple interference: quantum violation of the pigeonhole principle and exchange of properties between quantum particles. Phys. Rev. A 104, 012212 (2021)

    Article  MathSciNet  Google Scholar 

  26. Hance, J.R., Rarity, J., Ladyman, J.: Weak values and the past of a quantum particle. Phys. Rev. Res. 5, 023048 (2023)

  27. Dziewior, J., Knips, L., Farfurnik, D., Vaidman, L.: Universality of local weak interactions and its application for interferometric alignment. PNAS 16, 2881 (2019)

    Article  Google Scholar 

  28. Hofmann, H.F.: Direct evaluation of measurement uncertainties by feedback compensation of decoherence. Phys. Rev. Res. 3, L012011 (2021)

    Article  Google Scholar 

  29. Lemmel, H., Geerits, N., Danner, A., Hofmann, H.F., Sponar, S.: Quantifying the presence of a neutron in the paths of an interferometer. Phys. Rev. Res. 4, 023075 (2022)

    Article  Google Scholar 

  30. Duprey, Q., Matzkin, A.: Proposal to observe path superpositions in a double-slit setup. Phys. Rev. A 105, 052231 (2022)

    Article  Google Scholar 

  31. Yokota, K., Imoto, N.: When a negative weak value -1 plays the counterpart of a probability 1. N. J. Phys. 18, 123002 (2016)

    Article  MATH  Google Scholar 

  32. Williams, H.: Superpositions of unitary operators in quantum mechanics. IOPSciNotes 1, 035204 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger F. Hofmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, H.F., Matsushita, T., Kuroki, S. et al. A possible solution to the which-way problem of quantum interference. Quantum Stud.: Math. Found. 10, 429–437 (2023). https://doi.org/10.1007/s40509-023-00304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-023-00304-5

Keywords

Navigation