Skip to main content
Log in

A bidirectional hybrid quantum communication scheme for a known and an unknown qubit

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

In this paper, we present a protocol for the bilateral creation of a known and an unknown qubit amongst two parties. The scheme is a hybrid type protocol of teleportation and remote state preparation protocol. There is an overseeing Controller who is connected to both the parties and without whose action the protocol cannot be completed. A five-qubit quantum entangled state is employed as quantum channel. Single qubit and Bell basis measurements are involved in the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Our manuscript has no associated data.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    MathSciNet  Google Scholar 

  3. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Google Scholar 

  4. Yan, F., Yan, T.: Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. Bull. 55, 902–906 (2010)

    Google Scholar 

  5. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quant. Inf. Process. 11(2), 615–628 (2012)

    MathSciNet  Google Scholar 

  6. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    MathSciNet  Google Scholar 

  7. Zhang, Z.H., Shu, L., Mo, Z.W.: Quantum teleportation and superdense coding through the composite W-Bell channel. Quantum Inf. Process. 12, 1957–1967 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    MATH  Google Scholar 

  10. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015)

    MATH  Google Scholar 

  11. Choudhury, S.B., Dhara, A.: A bidirectional teleportation protocol for arbitrary two-qubit state under the supervision of a third party. Int. J. Theor. Phys. 55, 2275–2285 (2016)

    MATH  Google Scholar 

  12. Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016)

    MATH  Google Scholar 

  13. Li, W., Zha, X.W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Choudhury, B.S., Samanta, S.: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Choudhury, B.S., Samanta, S.: A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes. Int. J. Quantum Inf. 16(3), 1850026 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Lo, H.K.: Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Google Scholar 

  17. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Google Scholar 

  18. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Google Scholar 

  19. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Google Scholar 

  20. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B-At. Mol. Opt. 40(18), 3719–3724 (2007)

    Google Scholar 

  21. Wang, D., Liu, Y.-M., Zhang, Z.-J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008)

    Google Scholar 

  22. Wang, D.: Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quantum Inf. 8(8), 1265–1275 (2010)

    MATH  Google Scholar 

  23. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748–2757 (2011)

    MATH  Google Scholar 

  24. Wang, D., Hu, Y.-D., Wang, Z.-Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)

    MATH  Google Scholar 

  25. Choudhury, B.S., Samanta, S.: Remote preparation of some three particle entangled states under divided information. Int J. Theor. Phys. 58, 83–91 (2019)

    MATH  Google Scholar 

  26. Li, Y.-H., Qiao, Y., Sang, M.-H., Nie, Y.-Y.: Bidirectional controlled remote state preparation of an arbitrary two-qubit state. Int J. Theor. Phys. 58, 2228–2234 (2019)

    MATH  Google Scholar 

  27. Jia-yin, P., Hong-xuan, L.: Cyclic remote state preparation. Int. J. Theor. Phys. 60(4), 1593–1602 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Chaudhary, M., Fadel, M., Ilo-Okeke, E.O., Pyrkov, A.N., Ivannikov, V., Byrnes, T.: Remote state preparation of two-component Bose-Einstein condensates. Phys. Rev. A. 103(6), 062417 (2021)

    MathSciNet  Google Scholar 

  29. An, N.B., Choudhury, B.S.: Samanta, S: Two-way remote preparations of inequivalent quantum states under a common control. Int. J. Theor. Phys. 60, 47–62 (2021)

    MATH  Google Scholar 

  30. Rajiuddin, S., Baishya, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf. Process 19, 87 (2020)

    Google Scholar 

  31. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473–1476 (1994)

    Google Scholar 

  32. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    MathSciNet  Google Scholar 

  33. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015)

    MATH  Google Scholar 

  34. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016)

    MATH  Google Scholar 

  35. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 384–387 (2016)

    MATH  Google Scholar 

  36. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 and 2 qubit teleportation protocol between Alice and Bob via 9-qubit Cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Huo, G.W., Zhang, T.Y., Zha, X.W., Zhang, M.Z.: Controlled asymmetric bidirectional hybrid of remote state preparation and quantum teleportation. Int. J. Theor. Phys. 59, 331–337 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Dash, T., Sk, R., Panigrahi, P.K.: Deterministic joint remote state preparation of arbitrary two-qubit state through noisy cluster-GHZ channel. Opt. Commun. 464, 125518 (2020)

    Google Scholar 

  39. Barik, S., Warke, A., Behera, B.K., Panigrahi, P.K.: Deterministic hierarchical remote state preparation of a two-qubit entangled state using Brown, et al. state in a noisy environment. IET Quantum Commun. 1(2), 49–54 (2020)

  40. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using 2 n Bell states as quantum channel. Opt. Quant. Electr. 54(9), 568 (2022)

    Google Scholar 

  41. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Google Scholar 

  42. Shi, R., Huang, L., Yang, W.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell-states. Quantum Inf. Process. 10, 231–239 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Indian Institute of Engineering Science and Technology, Shibpur. We gratefully acknowledge the suggestions of the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binayak S. Choudhury.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B.S., Mandal, M.K., Samanta, S. et al. A bidirectional hybrid quantum communication scheme for a known and an unknown qubit. Quantum Stud.: Math. Found. 10, 89–99 (2023). https://doi.org/10.1007/s40509-022-00284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-022-00284-y

Keywords

Navigation