Skip to main content
Log in

Quantum measurement engines and their relevance for quantum interpretations

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

This article presents recent progress in the theory of quantum measurement engines and discusses the implications of them for quantum interpretations and philosophical implications of the theory. Several new measurement engine designs are introduced and analyzed. We discuss a feedback-based atom-and-piston engine that exactly associates all work with successful events and all quantum heat with the failed events, as well as an unconditional but coherent qubit engine that can attain perfect efficiency. Any quantum measurement of an observable that does not commute with the Hamiltonian will necessarily change the energy of the system. We discuss different ways to extract that energy, the efficiency and work production of that process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121(3050), 580 (1928). https://doi.org/10.1038/121580a0

    Article  MATH  Google Scholar 

  2. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511813948

    Book  MATH  Google Scholar 

  3. Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J.M., Haroche, S.: Seeing a single photon without destroying it. Nature 400(6741), 239 (1999). https://doi.org/10.1038/22275

    Article  Google Scholar 

  4. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97(16), 166805 (2006)

    Article  Google Scholar 

  5. Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A., Martinis, J.M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101(20), 200401 (2008)

    Article  Google Scholar 

  6. Williams, N.S., Jordan, A.N.: Weak values and the Leggett-Garg inequality in solid-state qubits. Phys. Rev. Lett. 100(2), 026804 (2008)

    Article  Google Scholar 

  7. Dixon, P.B., Starling, D.J., Jordan, A.N., Howell, J.C.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102(17), 173601 (2009)

    Article  Google Scholar 

  8. Goggin, M., Almeida, M., Barbieri, M., Lanyon, B., O’brien, J., White, A., Pryde, G.: Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. 108(4), 1256 (2011)

    Article  Google Scholar 

  9. Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332(6034), 1170 (2011). https://doi.org/10.1126/science.1202218

    Article  MATH  Google Scholar 

  10. Chantasri, A., Dressel, J., Jordan, A.N.: Action principle for continuous quantum measurement. Phys. Rev. A 88(4), 042110 (2013)

    Article  Google Scholar 

  11. Murch, K.W., Weber, S.J., Macklin, C., Siddiqi, I.: Observing single quantum trajectories of a superconducting quantum bit. Nature 502, 211 (2013). https://doi.org/10.1038/nature12539

    Article  Google Scholar 

  12. Jordan, A.N.: Quantum physics: watching the wavefunction collapse. Nature 502(7470), 177 (2013)

    Article  Google Scholar 

  13. Weber, S., Chantasri, A., Dressel, J., Jordan, A.N., Murch, K., Siddiqi, I.: Mapping the optimal route between two quantum states. Nature 511(7511), 570 (2014)

    Article  Google Scholar 

  14. Viza, G.I., Martínez-Rincón, J., Alves, G.B., Jordan, A.N., Howell, J.C.: Experimentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A 92(3), 032127 (2015)

    Article  Google Scholar 

  15. Chantasri, A., Kimchi-Schwartz, M.E., Roch, N., Siddiqi, I., Jordan, A.N.: Quantum trajectories and their statistics for remotely entangled quantum bits. Phys. Rev. X 6(4), 041052 (2016)

    Google Scholar 

  16. Naghiloo, M., Tan, D., Harrington, P., Lewalle, P., Jordan, A., Murch, K.: Quantum caustics in resonance-fluorescence trajectories. Phys. Rev. A 96(5), 053807 (2017)

    Article  Google Scholar 

  17. Chantasri, A., Atalaya, J., Hacohen-Gourgy, S., Martin, L.S., Siddiqi, I., Jordan, A.N.: Simultaneous continuous measurement of noncommuting observables: quantum state correlations. Phys. Rev. A 97(1), 012118 (2018)

    Article  Google Scholar 

  18. Dassonneville, R., Ramos, T., Milchakov, V., Planat, L., Dumur, É., Foroughi, F., Puertas, J., Leger, S., Bharadwaj, K., Delaforce, J., Naud, C., Hasch-Guichard, W., García-Ripoll, J.J., Roch, N., Buisson, O.: Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling. arXiv (2019). https://arxiv.org/abs/1905.00271

  19. Rossi, M., Mason, D., Chen, J., Schliesser, A.: Observing and verifying the quantum trajectory of a mechanical resonator. Phys. Rev. Lett. 123(16), 163601 (2019). https://doi.org/10.1103/PhysRevLett.123.163601

    Article  Google Scholar 

  20. Clausius, R.: The Mechanical Theory of Heat. Macmillan and Co., New York (1879)

    MATH  Google Scholar 

  21. Carnot, S.: Réflexions sur la puissance motrice du feu et sur les machines propres à développer atte puissance. Bachelier Libraire (1824)

  22. Elouard, C., Herrera-Martí, D.A., Clusel, M., Auffèves, A.: The role of quantum measurement in stochastic thermodynamics. npj Quantum Inf. 3(9), 1 (2017). https://doi.org/10.1038/s41534-017-0008-4

    Article  Google Scholar 

  23. Elouard, C., Herrera-Martí, D., Huard, B., Auffèves, A.: The role of quantum measurement in stochastic thermodynamics. Phys. Rev. Lett. 118(26), 260603 (2017). https://doi.org/10.1103/PhysRevLett.118.260603

    Article  Google Scholar 

  24. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183 (1961)

    Article  MathSciNet  Google Scholar 

  25. Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 34(3), 501 (2003)

    Article  MathSciNet  Google Scholar 

  26. Elouard, C., Jordan, A.N.: Efficient quantum measurement engines. Phys. Rev. Lett. 120(26), 260601 (2018). https://doi.org/10.1103/PhysRevLett.120.260601

    Article  Google Scholar 

  27. Yi, J., Talkner, P., Kim, Y.W.: Single-temperature quantum engine without feedback control. Phys. Rev. E 96(2), 022108 (2017). https://doi.org/10.1103/PhysRevE.96.022108

    Article  Google Scholar 

  28. Ding, X., Yi, J., Kim, Y.W., Talkner, P.: Measurement-driven single temperature engine. Phys. Rev. E 98(4), 042122 (2018). https://doi.org/10.1103/PhysRevE.98.042122

    Article  Google Scholar 

  29. Pusz, W., Woronowicz, S.L.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58(3), 273 (1978). https://doi.org/10.1007/BF01614224

    Article  MathSciNet  Google Scholar 

  30. Kammerlander, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6(22174), 22174 (2016). https://doi.org/10.1038/srep22174

    Article  Google Scholar 

  31. Sagawa, T., Ueda, M.: Minimal energy cost for thermodynamic information processing: measurement and information erasure. arXiv (2008) https://doi.org/10.1103/PhysRevLett.102.250602

  32. Grangier, P., Auffèves, A.: What is quantum in quantum randomness? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376 (2018) https://doi.org/10.1098/rsta.2017.0322

    Article  Google Scholar 

Download references

Acknowledgements

We thank the John Templeton Foundation for sponsoring the “Quantum Limits of Knowledge” meeting in Copenhagen, Denmark at the Niels Bohr Institute, as well as Eugene Polzik for organizing it and inviting us to present our research. ANJ and CE’s work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award No. DE-SC-467 0017890. We thank Joe Eberly for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Jordan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordan, A.N., Elouard, C. & Auffèves, A. Quantum measurement engines and their relevance for quantum interpretations. Quantum Stud.: Math. Found. 7, 203–215 (2020). https://doi.org/10.1007/s40509-019-00217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-019-00217-2

Keywords

Navigation