Superresolution using supergrowth and intensity contrast imaging


This article explores the possibility of another kind of superresolution functionality that exists in superoscillatory functions besides the “faster than Fourier” feature. We posit the ability to resolve images with resolution beyond the wavelength of light used via the exponentially rising and falling parts of superoscillatory and related functions. We give some preliminary results that this technique can indeed be useful using intensity contrast imaging. The exponential growth or decay of these functions can give higher resolution of the image, provided the rate of falloff is faster than the smallest wavenumber of the light that is used: “supergrowth”. One limitation of this proposal is the high dynamic range the detector would need to possess to map out several decades of intensity. An outstanding question is to find the optimal image reconstruction method using a superoscillatory point spread function that makes optimal use of the function’s unique properties. We give a number of conjectures about this new kind of supergrowth imaging technique as an outlook for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Aharonov, Y., Popescu, S., Rohrlich, D.: How can an infra-red photon behave as a gamma ray?. Tel-Aviv University Preprint TAUP 1847–90

  2. 2.

    Berry, M.V., Popescu, S.: Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39(22), 6965 (2006)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Berry, M.V.: Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A Math. Gen. 27(11), L391 (1994)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Berry, M., Zheludev, N., Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J., Rogers, E.T., Qin, F., Hong, M., et al.: Roadmap on superoscillations. J. Opt. 21(5), 053002 (2019)

    Article  Google Scholar 

  5. 5.

    Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Some mathematical properties of superoscillations. J. Phys. A Math. Theor. 44(36), 365304 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Popescu, S.: Multi-time and non-local measurements in quantum mechanics. Ph.D. thesis, PhD Thesis (1991)

  7. 7.

    Lipson, A., Lipson, S.G., Lipson, H.: Optical Physics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  8. 8.

    Tsang, M., Nair, R., Lu, X.M.: Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X 6, 031033 (2016)

    Google Scholar 

  9. 9.

    Pendharker, S., Shende, S., Newman, W., Ogg, S., Nazemifard, N., Jacob, Z.: Axial super-resolution evanescent wave tomography. Opt. Lett. 41(23), 5499 (2016)

    Article  Google Scholar 

  10. 10.

    Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000)

    Article  Google Scholar 

  11. 11.

    Huang, F.M., Chen, Y., de Abajo, F.J.G., Zheludev, N.I.: Optical super-resolution through super-oscillations. J. Opt. A Pure Appl. Opt. 9(9), S285 (2007)

    Article  Google Scholar 

  12. 12.

    Kozawa, Y., Matsunaga, D., Sato, S.: Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica 5(2), 86 (2018)

    Article  Google Scholar 

  13. 13.

    McCutchen, C.: Optical systems for observing surface topography by frustrated total internal reflection and by interference. Rev. Sci. Instrum. 35(10), 1340 (1964)

    Article  Google Scholar 

  14. 14.

    Guerra, J.M.: Photon tunneling microscopy. Appl. Opt. 29(26), 3741 (1990)

    Article  Google Scholar 

  15. 15.

    Pohl, D.W., Denk, W., Lanz, M.: Optical stethoscopy: image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44(7), 651 (1984)

    Article  Google Scholar 

  16. 16.

    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  17. 17.

    Motka, L., Stoklasa, B., D’Angelo, M., Facchi, P., Garuccio, A., Hradil, Z., Pascazio, S., Pepe, F., Teo, Y., Řeháček, J., et al.: Optical resolution from Fisher information. Eur. Phys. J. Plus 131(5), 130 (2016)

    Article  Google Scholar 

Download references


I thank Marc Lopez for discussions and encouragement in this project. This work was supported by Chapman University during the Superoscillations—Theoretical Aspects and Applications Symposium, held in Cetraro, Italy from June 15 to 16, 2019. I thank Daniele Struppa for the invitation.

Author information



Corresponding author

Correspondence to Andrew N. Jordan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jordan, A.N. Superresolution using supergrowth and intensity contrast imaging. Quantum Stud.: Math. Found. 7, 285–292 (2020).

Download citation


  • Superoscillations
  • Superresolution
  • Supergrowth