Skip to main content

Diffraction-based interaction-free measurements

Abstract

We introduce diffraction-based interaction-free measurements. In contrast with previous work where a set of discrete paths is engaged, good-quality interaction-free measurements can be realized with a continuous set of paths, as is typical of optical propagation. If a bomb is present in a given spatial region—so sensitive that a single photon will set it off—its presence can still be detected without exploding it. This is possible because, by not absorbing the photon, the bomb causes the single photon to diffract around it. The resulting diffraction pattern can then be statistically distinguished from the bomb-free case. We work out the case of single- versus double-slit in detail, where the double-slit arises because of a bomb excluding the middle region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987 (1993)

    Article  Google Scholar 

  2. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)

    Article  Google Scholar 

  3. Salih, H., Li, Z.-H., Al-Amri, M., Zubairy, M.S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110, 170502 (2013)

    Article  Google Scholar 

  4. Aharonov, Y., Vaidman, L.: Modification of counterfactual communication protocols that eliminates weak particle traces. Phys. Rev. A 99, 010103 (2019)

    Article  Google Scholar 

  5. White, A.G., Mitchell, J.R., Nairz, O., Kwiat, P.G.: Interaction-free imaging. Phys. Rev. A 58, 605 (1998)

    Article  Google Scholar 

  6. Zhang, Y., Sit, A., Bouchard, F., Larocque, H., Grenapin, F., Cohen, E., Elitzur, A.C., Harden, J.L., Boyd, R.W., Karimi, E.: Interaction-free ghost-imaging of structured objects. Opt. Express 27, 2212 (2019)

    Article  Google Scholar 

  7. Mitchison, G., Jozsa, R.: Proceedings of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 457, 1175 (2001)

    Article  Google Scholar 

  8. Hosten, O., Rakher, M.T., Barreiro, J.T., Peters, N.A., Kwiat, P.G.: Counterfactual quantum computation through quantum interrogation. Nature 439, 949 (2006)

    Article  Google Scholar 

  9. Kong, F., Ju, C., Huang, P., Wang, P., Kong, X., Shi, F., Jiang, L., Du, J.: Experimental realization of high-efficiency counterfactual computation. Phys. Rev. Lett. 115, 080501 (2015)

    Article  Google Scholar 

  10. Vaidman, L.: The meaning of the interaction-free measurements. Found. Phys. 33, 491 (2003)

    Article  MathSciNet  Google Scholar 

  11. Simon, S.H., Platzman, P.: Fundamental limit on interaction-free measurements. Phys. Rev. A 61, 052103 (2000)

    Article  Google Scholar 

  12. Dicke, R.: On observing the absence of an atom. Found. Phys. 16, 107 (1986)

    Article  MathSciNet  Google Scholar 

  13. Feynman, R.P., Hibbs, A.R., Styer, D.F.: Quantum Mechanics and Path Integrals, Emended ed Mineola. Dover, New York (2010)

    Google Scholar 

  14. Feynman, R.P.: QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton (2006)

    Google Scholar 

  15. Dressel, J., Lyons, K., Jordan, A.N., Graham, T.M., Kwiat, P.G.: Strengthening weak-value amplification with recycled photons. Phys. Rev. A 88, 023821 (2013)

    Article  Google Scholar 

  16. Goodman, J.W.: Introduction to Fourier Optics. Roberts and Company Publishers, Englewood (2005)

    Google Scholar 

  17. Sawant, R., Samuel, J., Sinha, A., Sinha, S., Sinha, U.: Nonclassical paths in quantum interference experiments. Phys. Rev. Lett. 113, 120406 (2014)

    Article  Google Scholar 

  18. Beau, M.: Feynman path integral approach to electron diffraction for one and two slits: analytical results. Eur. J. Phys. 33, 1023 (2012)

    Article  Google Scholar 

  19. Broadbent, C.J., Zerom, P., Shin, H., Howell, J.C., Boyd, R.W.: Discriminating orthogonal single-photon images. Phys. Rev. A 79, 033802 (2009)

    Article  Google Scholar 

  20. Misra, B., Sudarshan, E.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    Article  MathSciNet  Google Scholar 

  21. Mackrory, J.B., Jacobs, K., Steck, D.A.: Reflection of a particle from a quantum measurement. New J. Phys. 12, 113023 (2010)

    Article  Google Scholar 

  22. Halliwell, J., Yearsley, J.: Pitfalls of path integrals: amplitudes for spacetime regions and the quantum Zeno effect. Phys. Rev. D 86, 024016 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank John Howell, Paul Kwiat, and Jeff Tollaksen for helpful discussions. This work was supported by the NSF Grant DMR-1809343. Y.A. acknowledges support from the Israel Science Foundation (Grant 1311/14), Israeli Centers of Research Excellence (ICORE) Center “Circle of Light”, and the German–Israeli Project Cooperation (Deutsch-Israelische Projektkooperation, DIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer Rogers.

Ethics declarations

Conflict of interest

On behalf of all authors, Spencer Rogers states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, S., Aharonov, Y., Elouard, C. et al. Diffraction-based interaction-free measurements. Quantum Stud.: Math. Found. 7, 145–153 (2020). https://doi.org/10.1007/s40509-019-00205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-019-00205-6

Keywords

  • Interaction-free measurement
  • Bomb-detection
  • Diffraction
  • Double-slit
  • Zeno effect