Skip to main content

Langevin equation for a dissipative macroscopic quantum system: Bohmian theory versus quantum mechanics

Abstract

In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to a large number of environmental micro-oscillating particles. Then, the Langevin equation is obtained for the system using two approaches: Quantum Mechanics and Bohmian Theory. Our results show that the predictions of the two theories are inherently different in real conditions. Nevertheless, the Langevin equation obtained by Bohmian approach could be reduced to the quantum one, when the vibrational frequency of the central system is high enough compared to the frequency of the environmental particles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  Google Scholar 

  2. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  3. Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211 (1981)

    Article  Google Scholar 

  4. Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. 69, 80 (1980)

    MathSciNet  Article  Google Scholar 

  5. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    MathSciNet  Article  Google Scholar 

  6. Leggett, A.J.: Quantum Mechanics at the Macroscopic Level, in Chance and Matter. Elsevier Science Publishers, Amsterdam (1987)

    Google Scholar 

  7. Caldeira, A.O.: An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  8. Takagi, S.: Macroscopic Quantum Tunneling. Cambridge University Press, New York (2005)

    Google Scholar 

  9. Dorofeyev, I.A.: Coupled quantum oscillators within independent quantum reservoirs. Can. J. Phys. 91, 537 (2013)

    Article  Google Scholar 

  10. Bhattacharya, S., Roy, S.: Dissipative effect and tunneling time. Adv. Math. Phys. 2011, 1 (2011)

    MathSciNet  Article  Google Scholar 

  11. Jaekel, M.T., Reynaud, S.: Quantum Langevin equations and stability. J. Phys. I 3, 339 (1993)

    Google Scholar 

  12. Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423 (1965)

    Article  Google Scholar 

  13. Kostin, M.D.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589 (1972)

    Article  Google Scholar 

  14. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Phys. A 121, 587 (1983)

    MathSciNet  Article  Google Scholar 

  15. Ford, G.W., Kac, M.: On the quantum Langevin equation. J. Stat. Phys. 46, 803 (1987)

    MathSciNet  Article  Google Scholar 

  16. Ford, G.W., Lewis, J.T., O’Connel, R.F.: Quantum Langevin equation. Phys. Rev. A 37, 4419 (1988)

    MathSciNet  Article  Google Scholar 

  17. Ford, G.W., Lewis, J.T., O’Connel, R.F.: Dissipative quantum tunneling: quantum Langevin equation approach. Phys. Lett. A 128, 29 (1988)

    MathSciNet  Article  Google Scholar 

  18. Lampo, A., Lim, S., Garcia-March, M., Lewenstein, M.: Bose polaron as an instance of quantum Brownian motion. Quantum 1, 30 (2017)

    Article  Google Scholar 

  19. Lampo, A., Charalambpus, C., Garcia-March, M., Lewenstein, M.: Non-Markovian polaron dynamics in a trapped Bose-Einstein condensate. Phys. Rev. A 98, 063630 (2018)

    Article  Google Scholar 

  20. Vandyck, M.A.: On the damped harmonic oscillator in the de Broglie–Bohm hidden-variable theory. J. Phys. A Math. Gen. 27, 1743 (1994)

    MathSciNet  Article  Google Scholar 

  21. Tilbi, A., Boudjedaa, T., Merad, M., Chetouani, L.: On the damped harmonic oscillator in the de Broglie–Bohm hidden-variable theory. Phys. Scr. 75, 474 (2005)

    Article  Google Scholar 

  22. Naeij, H.R., Shafiee, A.: Double-slit interference pattern for a macroscopic quantum system. Found. Phys. 46, 1634 (2016)

    MathSciNet  Article  Google Scholar 

  23. Naeij, H.R., Shafiee, A.: Position-momentum uncertainty relation for an open macroscopic quantum system. J. Stat. Phys. 165, 1141 (2016)

    MathSciNet  Article  Google Scholar 

  24. Banerjee, S., Ghosh, R.: General quantum Brownian motion with initially correlated and nonlinearly coupled environment. Phys. Rev. E 67, 056120 (2003)

    Article  Google Scholar 

  25. Hu, B.L., Paz, J., Zhang, Y.: Quantum Brownian motion in a general environment. II. Nonlinear coupling and perturbative approach. Phys. Rev. D 47, 1576 (1993)

    MathSciNet  Article  Google Scholar 

  26. Massignan, P., Lampo, A., Wehr, J., Lewenstein, M.: Quantum Brownian motion with inhomogeneous damping and diffusion. Phys. Rev. A 91, 033627 (2015)

    Article  Google Scholar 

  27. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166 (1952)

    MathSciNet  Article  Google Scholar 

  28. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. II. Phys. Rev. 85, 180 (1952)

    MathSciNet  Article  Google Scholar 

  29. Holland, P.: The quantum theory of motion. Cambridge University Press, New York (1993)

    Book  Google Scholar 

  30. Tumulka, R.: Bohmian mechanics. arXiv:1704.08017 (2018)

  31. Gisin, N.: Why Bohmian mechanics? One- and two-time position measurements. Bell Inequal. Philos. Phys. Entropy 20, 105 (2018)

    Google Scholar 

  32. Golshani, M., Akhavn, O.: Experiment can decide between standard and Bohmian quantum mechanics. arXiv:quant-ph/0103100 (2001)

  33. Abolhasani, M., Golshani, M.: Tunneling times in the Copenhagen interpretation of quantum mechanics. Phys. Rev. A 62, 12106 (2000)

    Article  Google Scholar 

  34. Scully, M.O.: Do Bohm trajectories always provide a trustworthy physical picture of particle motion? Phys. Scripta 76, 41 (1998)

    MathSciNet  Article  Google Scholar 

  35. Vigier, J.P.: Photon mass and Heaviside force. Phys. Lett. A 270, 221 (2000)

    MathSciNet  Article  Google Scholar 

  36. Leggett, A.J.: Some thought-experiments involving macrosystems as illustrations of various interpretations of quantum mechanics. Found. Phys. 29, 445 (1999)

    MathSciNet  Article  Google Scholar 

  37. Hiley, B. J., Callaghan, R. E., Maroney, O. J. E.: Quantum trajectories, real, surreal or an approximation to a deeper process?. arXiv:quant-ph/0010020 (2000)

  38. Marchildon, L.: No contradictions between Bohmian and quantum mechanics. arXiv:quant-ph/0007068 (2000)

  39. Marchildon, L.: On Bohmian trajectories in two-particle interference devices. arXiv:quant-ph/0101132 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Shafiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naeij, H.R., Shafiee, A. Langevin equation for a dissipative macroscopic quantum system: Bohmian theory versus quantum mechanics. Quantum Stud.: Math. Found. 7, 5–15 (2020). https://doi.org/10.1007/s40509-019-00195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-019-00195-5

Keywords

  • Langevin equation
  • Macroscopic quantum system
  • Harmonic environment
  • Bohmian theory