Skip to main content

Quantum algorithm for the root-finding problem

Abstract

A quantum algorithm of finding the roots of a polynomial function \(f(x)=x^m +a_{m-1}x^{m-1}+\cdots +a_1x+ a_0\) is discussed by using the generalized Bernstein–Vazirani algorithm. Our algorithm is presented in the modulo 2. Here all the roots are in the integers Z. The speed of solving the problem is shown to outperform the best classical case by a factor of m.

This is a preview of subscription content, access via your institution.

References

  1. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 400, 97 (1985)

    MathSciNet  MATH  Article  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 439, 553 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  3. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A 454, 339 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  4. Jones, J.A., Mosca, M.: Implementation of a quantum algorithm to solve Deutsch’s problem on a nuclear magnetic resonance quantum computer. J. Chem. Phys. 109, 1648 (1998)

    Article  Google Scholar 

  5. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature (London) 421, 48 (2003)

    Article  Google Scholar 

  6. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quant. Semiclass. Opt. 7, 288–292 (2005)

    Article  Google Scholar 

  7. Kim, Y.-H.: Single-photon two-qubit entangled states: preparation and measurement. Phys. Rev. A 67, 040301(R) (2003)

    MathSciNet  Article  Google Scholar 

  8. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003)

    Article  Google Scholar 

  9. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Experimental realization of Deutsch’s algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  10. Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp. 11–20 (1993). https://doi.org/10.1145/167088.167097

  11. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26–5, 1411–1473 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  12. Simon, D.R.: On the power of quantum computation. Foundations of Computer Science. Proceedings of 35th Annual Symposium on: 116-123, retrieved 2011-06-06 (1994)

  13. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, p. 124 (1994)

  14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, p. 212 (1996)

  15. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Implementation of a quantum algorithm to solve the Bernstein–Vazirani parity problem without entanglement on an ensemble quantum computer. Phys. Rev. A 64, 042306 (2001)

    Article  Google Scholar 

  16. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P., Haelterman, M., Massar, S.: Fiber-optics implementation of the Deutsch–Jozsa and Bernstein–Vazirani quantum algorithms with three qubits. Phys. Rev. Lett. 90, 157902 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  17. Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Phys. Rev. A 92, 012327 (2015)

    Article  Google Scholar 

  18. Li, H., Yang, L.: A quantum algorithm for approximating the influences of Boolean functions and its applications. Quant. Inf. Process. 14, 1787 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  19. Adcock, M.R.A., Hoyer, P., Sanders, B.C.: Quantum computation with coherent spin states and the close Hadamard problem. Quant. Inf. Process. 15, 1361 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  20. Fallek, S.D., Herold, C.D., McMahon, B.J., Maller, K.M., Brown, K.R., Amini, J.M.: Transport implementation of the Bernstein–Vazirani algorithm with ion qubits. N. J. Phys. 18, 083030 (2016)

    Article  Google Scholar 

  21. Diep, D.N., Giang, D.H., Van Minh, N.: Quantum Gauss–Jordan elimination and simulation of accounting principles on quantum computers. Int. J. Theor. Phys. 56, 1948 (2017). https://doi.org/10.1007/s10773-017-3340-8

    MathSciNet  MATH  Article  Google Scholar 

  22. Jin, W.: Dynamical analysis of Grover’s search algorithm in arbitrarily high-dimensional search spaces. Quant. Inf. Process. 15, 65 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  23. Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A., Geurdes, H.: A method of computing many functions simultaneously by using many parallel quantum systems. Asian J. Math. Phys. 1(1), 1–4 (2017)

    Google Scholar 

  24. Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., Farouk, A., Diep, D.N.: Creating very true quantum algorithms for quantum energy based computing. Int. J. Theor. Phys. 57, 973 (2018). https://doi.org/10.1007/s10773-017-3630-1

    MathSciNet  MATH  Article  Google Scholar 

  25. Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., Farouk, A.: New method of calculating a multiplication by using the generalized Bernstein–Vazirani algorithm. Int. J. Theor. Phys. 57, 1605 (2018). https://doi.org/10.1007/s10773-018-3687-5

    MathSciNet  MATH  Article  Google Scholar 

  26. Nagata, K., Nakamura, T.: The Deutsch–Jozsa algorithm can be used for quantum key distribution. Open Access Lib. J. 2, e1798 (2015). https://doi.org/10.4236/oalib.1101798

    Article  Google Scholar 

  27. Nagata, K., Nakamura, T.: Quantum cryptography, quantum communication, and quantum computer in a noisy environment. Int. J. Theor. Phys. 56, 2086 (2017). https://doi.org/10.1007/s10773-017-3352-4

    MathSciNet  MATH  Article  Google Scholar 

  28. Nagata, K., Nakamura, T., Farouk, A.: Quantum cryptography based on the Deutsch–Jozsa algorithm. Int. J. Theor. Phys. 56, 2887 (2017). https://doi.org/10.1007/s10773-017-3456-x

    MathSciNet  MATH  Article  Google Scholar 

  29. Diep, D.N., Giang, D.H.: Quantum communication and Quantum multivariate polynomial interpolation. Int. J. Theor. Phys. 56, 2797 (2017). https://doi.org/10.1007/s10773-017-3444-1

    MathSciNet  MATH  Article  Google Scholar 

  30. Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: A generalization of the Bernstein–Vazirani algorithm. MOJ Ecol. Environ. Sci. 2(1), 00010 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T. Quantum algorithm for the root-finding problem. Quantum Stud.: Math. Found. 6, 135–139 (2019). https://doi.org/10.1007/s40509-018-0171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-018-0171-0

Keywords

  • Quantum computation
  • Quantum algorithms