Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 400, 97 (1985)
MathSciNet
MATH
Article
Google Scholar
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 439, 553 (1992)
MathSciNet
MATH
Article
Google Scholar
Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A 454, 339 (1998)
MathSciNet
MATH
Article
Google Scholar
Jones, J.A., Mosca, M.: Implementation of a quantum algorithm to solve Deutsch’s problem on a nuclear magnetic resonance quantum computer. J. Chem. Phys. 109, 1648 (1998)
Article
Google Scholar
Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature (London) 421, 48 (2003)
Article
Google Scholar
de Oliveira, A.N., Walborn, S.P., Monken, C.H.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quant. Semiclass. Opt. 7, 288–292 (2005)
Article
Google Scholar
Kim, Y.-H.: Single-photon two-qubit entangled states: preparation and measurement. Phys. Rev. A 67, 040301(R) (2003)
MathSciNet
Article
Google Scholar
Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003)
Article
Google Scholar
Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Experimental realization of Deutsch’s algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501 (2007)
MathSciNet
MATH
Article
Google Scholar
Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp. 11–20 (1993). https://doi.org/10.1145/167088.167097
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26–5, 1411–1473 (1997)
MathSciNet
MATH
Article
Google Scholar
Simon, D.R.: On the power of quantum computation. Foundations of Computer Science. Proceedings of 35th Annual Symposium on: 116-123, retrieved 2011-06-06 (1994)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, p. 124 (1994)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, p. 212 (1996)
Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Implementation of a quantum algorithm to solve the Bernstein–Vazirani parity problem without entanglement on an ensemble quantum computer. Phys. Rev. A 64, 042306 (2001)
Article
Google Scholar
Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P., Haelterman, M., Massar, S.: Fiber-optics implementation of the Deutsch–Jozsa and Bernstein–Vazirani quantum algorithms with three qubits. Phys. Rev. Lett. 90, 157902 (2003)
MathSciNet
MATH
Article
Google Scholar
Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Phys. Rev. A 92, 012327 (2015)
Article
Google Scholar
Li, H., Yang, L.: A quantum algorithm for approximating the influences of Boolean functions and its applications. Quant. Inf. Process. 14, 1787 (2015)
MathSciNet
MATH
Article
Google Scholar
Adcock, M.R.A., Hoyer, P., Sanders, B.C.: Quantum computation with coherent spin states and the close Hadamard problem. Quant. Inf. Process. 15, 1361 (2016)
MathSciNet
MATH
Article
Google Scholar
Fallek, S.D., Herold, C.D., McMahon, B.J., Maller, K.M., Brown, K.R., Amini, J.M.: Transport implementation of the Bernstein–Vazirani algorithm with ion qubits. N. J. Phys. 18, 083030 (2016)
Article
Google Scholar
Diep, D.N., Giang, D.H., Van Minh, N.: Quantum Gauss–Jordan elimination and simulation of accounting principles on quantum computers. Int. J. Theor. Phys. 56, 1948 (2017). https://doi.org/10.1007/s10773-017-3340-8
MathSciNet
MATH
Article
Google Scholar
Jin, W.: Dynamical analysis of Grover’s search algorithm in arbitrarily high-dimensional search spaces. Quant. Inf. Process. 15, 65 (2016)
MathSciNet
MATH
Article
Google Scholar
Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A., Geurdes, H.: A method of computing many functions simultaneously by using many parallel quantum systems. Asian J. Math. Phys. 1(1), 1–4 (2017)
Google Scholar
Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., Farouk, A., Diep, D.N.: Creating very true quantum algorithms for quantum energy based computing. Int. J. Theor. Phys. 57, 973 (2018). https://doi.org/10.1007/s10773-017-3630-1
MathSciNet
MATH
Article
Google Scholar
Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., Farouk, A.: New method of calculating a multiplication by using the generalized Bernstein–Vazirani algorithm. Int. J. Theor. Phys. 57, 1605 (2018). https://doi.org/10.1007/s10773-018-3687-5
MathSciNet
MATH
Article
Google Scholar
Nagata, K., Nakamura, T.: The Deutsch–Jozsa algorithm can be used for quantum key distribution. Open Access Lib. J. 2, e1798 (2015). https://doi.org/10.4236/oalib.1101798
Article
Google Scholar
Nagata, K., Nakamura, T.: Quantum cryptography, quantum communication, and quantum computer in a noisy environment. Int. J. Theor. Phys. 56, 2086 (2017). https://doi.org/10.1007/s10773-017-3352-4
MathSciNet
MATH
Article
Google Scholar
Nagata, K., Nakamura, T., Farouk, A.: Quantum cryptography based on the Deutsch–Jozsa algorithm. Int. J. Theor. Phys. 56, 2887 (2017). https://doi.org/10.1007/s10773-017-3456-x
MathSciNet
MATH
Article
Google Scholar
Diep, D.N., Giang, D.H.: Quantum communication and Quantum multivariate polynomial interpolation. Int. J. Theor. Phys. 56, 2797 (2017). https://doi.org/10.1007/s10773-017-3444-1
MathSciNet
MATH
Article
Google Scholar
Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: A generalization of the Bernstein–Vazirani algorithm. MOJ Ecol. Environ. Sci. 2(1), 00010 (2017)
Google Scholar