Skip to main content

Scheme for implementing dichotomic quantum measurements through non-ideal Stern–Gerlach setup

A Correction to this article was published on 25 June 2018

This article has been updated

Abstract

Positive operator-valued measures (POVMs) are the most general class of quantum measurements. There has been significant interest in the theory and possible implementations of generalized measurement in the form of POVMs. Such measurements are useful in the context of cryptography, state discrimination, preparation of arbitrary states and for monitoring quantum dynamics. As argued by Busch (Phys. Rev. D 33(8):2253–2261, 1986), the most general dichotomic POVMs are characterized by two real parameters known as sharpness and biasedness of measurements. Unbiased unsharp measurements have been demonstrated experimentally, for example using the quantum feedback stabilization of number of photons in a microwave cavity (Sayrin et al. Nat. (Lond.) 477:73, 2011), as well as in the context of energy measurements of trapped ions. However, to the best of our knowledge, unsharp biased measurements have not yet been probed experimentally. For this purpose, we propose in this work, an empirically realizable scheme using non-ideal Stern–Gerlach setup. The relevant formulation involves identifying one-to-one correspondences between biasedness, unsharpness of measurements and the key parameters characterizing non-ideal Stern–Gerlach setup. This study has the potential to be useful for the implementations of various quantum information tasks as well as for experiments related to quantum foundational studies based on POVMs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 25 June 2018

    The value of the non-ideal parameter α has been incorrectly stated to be between 0 and 1 after derivation of the time evolution of the corrupt Gaussian distribution in Section 6.2.

References

  1. von Neumann, J.: Mathematical foundations of quantum mechanics, princeton. Princeton University Press, Princeton (1966)

    Google Scholar 

  2. Busch, P., Grabowski, M., Lahti, P.: Operational quantum physics. Springer, Berlin (1995). [LNP]

    Book  MATH  Google Scholar 

  3. Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65, 030301(R) (2002)

    Article  Google Scholar 

  4. Busch, P.: On the Sharpness and Bias of Quantum Effects. Foundations of Physics. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Busch, P.: The standard model of quantum measurement theory: history and applications. Foundations of physics. Springer, Berlin (1996)

    Google Scholar 

  6. Sayrin, C., Dotsenko, I., Zhou, X., Peaudecerf, B., Rybarczyk, T., Gleyzes, S., Rouchon, P., Mirrahimi, M., Amini, H., Brune, M., Raimond, J.-M., Haroche, S.: Real-time quantum feedback prepares and stabilizes photon number states. Nat. (Lond.) 477, 73 (2011)

    Article  Google Scholar 

  7. Audretsch, J., Diosi, L., Konrad, T.: Evolution of a qubit under the influence of a succession of unsharp measurements. Phys. Rev. A 66, 022310 (2002)

    MathSciNet  Article  Google Scholar 

  8. Konrad, T., Uys, H.: Maintaining quantum coherence in the presence of noise through state monitoring. Phys. Rev. A 85, 012102 (2012)

    Article  Google Scholar 

  9. Español, P.: Novel methods in soft matter simulations. Springer, Berlin (2004)

    Google Scholar 

  10. Kofler, J., Brukner, C.: Condition for macroscopic realism beyond the Leggett-Garg inequalities. Phys. Rev. Lett. 87, 052115 (2007)

    Google Scholar 

  11. Jeong, H., Lim, Y., Kim, M.S.: Coarsening measurement references and the quantum-to-classical transition. Phys. Rev. Lett. 112, 010402 (2014)

    Article  Google Scholar 

  12. Raeisi, S., Sekatski, P., Simon, C.: Coarse graining makes it hard to see micro-macro entanglement. Phys. Rev. Lett. 107, 250401 (2011)

    Article  Google Scholar 

  13. Reddy, A., Samuel, J., Shivam, K., Sinha, S.: Coarse quantum measurement: an analysis of the Stern-Gerlach experiment. Phys. Lett. A. 380, 1135–1140 (2016)

    MathSciNet  Article  Google Scholar 

  14. Gerlach, W., Stern, O.: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Phys. 9, 349 (1922)

    Article  Google Scholar 

  15. Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” Variables, englewood cliffs. Prentice-Hall, Upper Saddle River (1952)

    Google Scholar 

  16. Wigner, E.P.: The problem of measurement. Am. J. Phys 31, 6 (1963)

    MathSciNet  Article  MATH  Google Scholar 

  17. Englert, B.G., Schwinger, J., Scully, M.O.: Is spin coherence like Humpty-Dumpty? I. simplified treatment. Found. Phys. 18, 1045 (1988)

    MathSciNet  Article  Google Scholar 

  18. Robert, J., Miniatura, C., Gorceix, O., Lorent, V., Le Boiteux, S., Reinhardt, J., Baudon, J.: Atomic quantum phase studies with a longitudinal Stern–Gerlach interferometer. J. de Phys. II, EDP Sci. 2(4), 601–614 (1992)

    Google Scholar 

  19. Home, D., Pan, A.K., Manirul Ali, M., Majumder, A.S.: Aspects of nonideal Stern–Gerlach experiment and testable ramifications. J. Phys A Math. Theor. 40(46), 13975 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  20. Busch, P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33(8), 2253–2261 (1986)

    MathSciNet  Article  Google Scholar 

  21. Vandergrift, G.: Accelerating wave packet solution to Schrödinger’s equation. Am. J. Phys. 68, 576–577 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumik Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adhikary, A., Ghosh, S. Scheme for implementing dichotomic quantum measurements through non-ideal Stern–Gerlach setup. Quantum Stud.: Math. Found. 6, 107–120 (2019). https://doi.org/10.1007/s40509-018-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-018-0168-8

Keywords

  • Stern–Gerlach experiment
  • Dichotomic quantum measurements
  • POVM
  • Coarse-grained measurements
  • Quantum foundations