Quantized massive-collective gauge fields and anomalous properties in high-\(T_\mathrm{c}\) cuprates

Regular Paper


Quantized massive gauge fields, which might mediate Cooper pair formation, have been presented as collective modes, which contain effects of spin fluctuation, charge fluctuation, and phonon, around doped holes from the viewpoint of adjacent interactions. Taking into account the restoration of spontaneous symmetry breaking, we have discussed the anomalous properties in the strange metal phase and the quantum criticality in high-\(T_\mathrm{c}\) cuprates. The present theoretical-formula satisfies both renormalization and unitalization conditions.


Superconductivity High-\(T_\mathrm{c}\) cuprates Quantized massive gauge field Pseudogap Fermi arc 


  1. 1.
    Campuzano, J.C., et al.: Electronic spectra and their relation to the (\(\pi \), \(\pi \)) collective mode in high-\(T_{\rm c}\) superconductors. Phys. Rev. Lett. 83, 3709 (1999)CrossRefGoogle Scholar
  2. 2.
    Miyakawa, N., et al.: Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8\delta }\). Phys. Rev. Lett. 80, 157 (1998)CrossRefGoogle Scholar
  3. 3.
    Norman, M.R., et al.: Destruction of the Fermi surface in underdoped high-\(T_{\rm c}\) superconductors. Nature 329, 157 (1998)CrossRefGoogle Scholar
  4. 4.
    Anderson, P.W.: The resonating valence bond state in La\(_2\)CuO\(_4\) and superconductivity. Science 235, 1196 (1987)CrossRefGoogle Scholar
  5. 5.
    Emery, V.J., Kivelson, S.A.: Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434 (1995)CrossRefGoogle Scholar
  6. 6.
    Chakravarty, S., et al.: Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)CrossRefGoogle Scholar
  7. 7.
    Hanaguri, T., et al.: A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca\(_{2-x}\)Na\(_x\)CuO\(_2\)Cl\(_2\). Nature 430, 1001 (2004)CrossRefGoogle Scholar
  8. 8.
    Wise, W.D., et al.: Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nat. Phys. 4, 696 (2008)CrossRefGoogle Scholar
  9. 9.
    Kamimura, H., Hamada, T., Ushio, H.: Theoretical exploration of electronic structure in cuprates from electronic entropy. Phys. Rev. B 66, 054504 (2002)CrossRefGoogle Scholar
  10. 10.
    Prelovŝek, P., Ramŝak, A.: Spectral functions, Fermi surface, and pseudogap in the \(t-J\) model. Phys. Rev. B 65, 174529 (2002)CrossRefGoogle Scholar
  11. 11.
    Tanaka, K., et al.: Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910 (2006)CrossRefGoogle Scholar
  12. 12.
    Lee, W.S., et al.: Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81 (2007)CrossRefGoogle Scholar
  13. 13.
    Kanazawa, I.: Gauge field and high-\(T_{\rm c}\) superconductivity. Phys. C 185–189, 1703 (1991)CrossRefGoogle Scholar
  14. 14.
    Kanazawa, I.: Quantized massive collective excitations, short-range spin fluctuations and high-\(T_{\rm c}\) superconductivity. J. Phys. A 36, 9371 (2003)CrossRefMATHGoogle Scholar
  15. 15.
    Kanazawa, I.: Anomalous properties and quantized massive gauge fields in high-\(T_{\rm c}\) cuprates. J. Phys. Conf. Ser. 108, 012013 (2008)CrossRefGoogle Scholar
  16. 16.
    Kanazawa, I.: Anomalous transport properties and T-evolution of Fermi arc in underdoped cuprates. J. Phys. Soc. Jpn. 74(Suppl), 200 (2005)CrossRefGoogle Scholar
  17. 17.
    Kanazawa, I.: Temperature dependence of anomalous transport properties and restoration of symmetry breaking in underdoped cuprates. J. Phys. Chem. Solids 66, 1388 (2005)CrossRefGoogle Scholar
  18. 18.
    Kanazawa, I.: The evolution mechanism of Fermi arc with increasing of hole-doping in high-\(T_{\rm c}\) cuprates. Phys. C 470, S183 (2010)CrossRefGoogle Scholar
  19. 19.
    Kanazawa, I., Sasaki, T.: Quantized massive collective modes and temperature dependence of the energy distribution curves in High-\(T_{\rm c}\) cuprates. JPS Conf. Proc. 3, 015016 (2014)Google Scholar
  20. 20.
    Kanazawa, I., Sasaki, T.: Quantized massive collective modes and massive spin fluctuations in high-\(T_{\rm c}\) cuprates. Phys. Scr. T165, 014038 (2015)CrossRefGoogle Scholar
  21. 21.
    Dipasupil, R.M., et al.: Energy gap evolution in the tunneling spectra of Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). J. Phys. Soc. Jpn. 71, 1535 (2002)CrossRefGoogle Scholar
  22. 22.
    Affleck, I., et al.: SU(2) gauge symmetry of the large-\(U\) limit of the Hubbard model. Phys. Rev. B 38, 745 (1988)CrossRefGoogle Scholar
  23. 23.
    Kadanoff, L.P., Ceva, H.: Determination of an operator algebra for the two-dimensional ising model. Phys. Rev. B 3, 3918 (1971)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hooft, G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1 (1978)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Becchi, C., Rouet, A., Stora, R.: Renormalization of the abelian Higgs–Kibble model. Commun. Math. Phys. 42, 127 (1975)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kugo, T., Ojima, I.: Local covariant operator formalism of non-abelian gauge theories and quark confinement problem. Prog. Theor. Phys. Suppl. 66, 1 (1979)CrossRefGoogle Scholar
  27. 27.
    Yazdani, A.: Visualizing pair formation on the atomic scale and the search for the mechanism of superconductivity in high-\(T_{\rm c}\) cuprates. J. Phys. Condensed Matter 21, 164214 (2009)CrossRefGoogle Scholar

Copyright information

© Chapman University 2017

Authors and Affiliations

  1. 1.Department of PhysicsTokyo Gakugei UniversityTokyoJapan

Personalised recommendations