Skip to main content
Log in

Anderson metal–insulator transition in doped polar cuprates

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

In this paper, we investigate the possibility of the Anderson transition for polarons, different dopants, and impurities in doped cuprates. We have developed the continuum theory of carrier self-trapping in a deformable lattice and near different dopants (impurities), the appropriate variational methods and tight-binding model for studying the formation of the localized hole states and the narrow energy bands of large polarons and dopants (impurities) in hole-doped cuprates \(\mathrm{La}_{2-x}\mathrm{Sr}_{x}\mathrm{CuO}_{4}\) (LSCO) and \(\mathrm{YBa}_{2}\mathrm{Cu}_{3}\mathrm{O}_{7-\delta }\) (YBCO). To develop the quantitative theory of the Anderson localization and derive the adequate quantitative criteria for the Anderson metal–insulator transition (MIT) in doped materials, we have studied localized states of non-interacting hole carriers in crystalline solids and metal–insulator transitions (MITs) caused by disorder in distribution of large polarons, dopants (or impurities). It is suggested that the large polarons, dopants, and impurities from different superlattices with different degrees of disorder. We have considered a crystalline array of potential wells with the depth \(U = U_{0}\) in the absence of disorder and developed the approximate methods for the quantitative estimation of the possible changes (or fluctuations) of the depth U of these potential wells between the limits \(U_{0}-V_{0}/2<U<U_{0}+V_{0}/2\) in the presence of disorder, where \(V_{0}\) is a random potential which is determined as the amplitude of the change of U due to random distribution of large polarons and dopants (impurities). Using the uncertainty principle, we have obtained the new and more adequate criteria for the Anderson transition in doped polar materials and analyzed the applicability of these criteria to the hole-doped cuprates both in the absence and in the presence of polaronic effects. We have shown that our theoretical results on Anderson MIT obtained by taking into account polaronic effects are in quantitative agreement with the well-established experimental results on MITs in hole-doped cuprates LSCO and YBCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mott, N.F.: Metal-insulator transitions. Taylor and Francis, London (1990)

    Google Scholar 

  2. Fink, J., Nicker, N., Alexander, M., et al.: High-energy spectroscopy studies of high-\(\text{ T }_{{\rm c}}\) superconductors. Physica C 185–189, 45 (1991)

    Article  Google Scholar 

  3. Boebinger, G.S., Ando, Y., Passner, A., et al.: Insulator-to-metal crossover in the normal state of \(\text{ La }_{2-{\rm x}}\text{ Sr }_{{\rm x}}\text{ CuO }_{4 }\) near optimum doping. Phys. Rev. Lett. 77, 5427 (1996)

    Article  Google Scholar 

  4. Kastner, M.A., Birgeneau, R.J., Shirane, G., Endoh, Y.: Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897 (1998)

    Article  Google Scholar 

  5. Lavrov, A.N., Gantmakher, V.F.: Low-temperature resistivity of underdoped cuprates. Phys. Usp. 41, 223 (1998)

    Article  Google Scholar 

  6. Abrikosov, A.N.: Resonant tunneling in high-\(\text{ T }_{{\rm c}}\) superconductors. Phys. Usp. 41, 605 (1998)

    Article  Google Scholar 

  7. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)

    Article  Google Scholar 

  8. Matchetti, P.A., Su, Z.-B., Lu, Yu.: Metal-insulator crossover in superconducting cuprates in strong magnetic fields. Phys. Rev. Lett. 86, 3831 (2001)

    Article  Google Scholar 

  9. Konstantinovic, Z., Li, Z.Z., Raffy, H.: Evolution of the resistivity of single-layer \(\text{ Bi }_{2}\text{ Sr }_{1.6}\text{ La }_{0.4}\text{ CuO }_{{\rm y}}\) thin films with doping and phase diagram. Physica C351, 163 (2001)

    Article  Google Scholar 

  10. Stojkovic, B.P., Pines, D.: Theory of the longitudinal and Hall conductivities of the cuprate superconductors. Phys. Rev. B 55, 8576–8595 (1997)

    Article  Google Scholar 

  11. Emin, D.: Disorder effects on small-polaron formation and hopping. Int. J. Mod. Phys. B 8, 819 (1994)

    Article  Google Scholar 

  12. Quemerias, P.: Crystallization of Polarons in Doped Ionic Materials. Mod. Phys. Lett. B 9, 1665 (1995)

    Article  Google Scholar 

  13. Dzhumanov, S.: Possible insulating, metallic and superconducting states in doped high-\(\text{ T }_{{\rm c}}\) superconductors. Solid State Commun. 115, 155 (2000)

    Article  Google Scholar 

  14. Ando, Y., Ono, S., Sun, X.F., Takeya, J., Balakirev, F.F., Betts, J.B., Boebinger, G.S.: Quantum Phase Transitions in the Cuprate Superconductor \(\text{ Bi }_{2}\text{ Sr }_{2-{\rm x}}\text{ La }_{{\rm x}}\text{ CuO }_{6+\delta }\). Phys. Rev. Lett. 92, 247004 (2004)

    Article  Google Scholar 

  15. Dzhumanov, S., Kurbanov, U.T., Kurmantayev, A.: Possible quantitative criteria for the mott and anderson transitions in doped uncompensated systems. Int. J. Mod. Phys. B 2, 12 (2007)

    Google Scholar 

  16. Finkel, B.A.: Low-temperature electric conductivity of \(\text{ YBa }_{2}\text{ Cu }_{3}\text{ O }_{7-\delta }\) ceramic high-\(\text{ T }_{{\rm c}}\) superconductors with different oxygen concentrations. Fiz. Nizk. Temp 28, 687 (2002)

    Google Scholar 

  17. Tsendin, K.D., Denisov, D.V., Popov, B.P.: Unified model of pseudogap features of conductivity in HTSCs. Pisma v Zh. Eksp. Teor. Fiz. 80, 277 (2004)

    Google Scholar 

  18. Ridley, B.: Quantum Processes in Semiconductors. Mir, Moscow (1986)

    MATH  Google Scholar 

  19. Toyozawa, Y.: Electron induced lattice relaxations and defect reactions. Physica B 116, 7 (1983)

    Article  Google Scholar 

  20. Dzhumanov, S., Baratov, A.A.: Rep. of Uzbek Academy of Sciences. 4, 16 (1995)

  21. Dzhumanov, S., Baratov, A.A., Abboudy, S.: Pairing theory of polarons in real and momentum space. Phys. Rev. B 54, 13121 (1996)

    Article  Google Scholar 

  22. Lu, J.P., Si, Q.: Spin polarons in high-\(\text{ T }_{{\rm c}}\) copper oxides: Differences between electron- and hole-doped systems. Phys. Rev. B 42, 950 (1990)

    Article  Google Scholar 

  23. Verbist, G., Peeters, F.M., Devreese, J.T.: Possible (bi)polaron effects in the high-\(\text{ T }_{\rm c}\) superconductors. Phys. Scripta. T39, 66 (1991)

    Article  Google Scholar 

  24. Emin, D., Hillery, M.S.: Formation of a large singlet bipolaron: Application to high-temperature bipolaronic superconductivity. Phys. Rev. B 39, 6575 (1989)

    Article  Google Scholar 

  25. Baetzold, R.C.: Atomistic study of defects in \(\text{ YBa2Cu }_{3}\text{ O }_{7 }\). Phys. Rev. 42, 56 (1990)

    Article  Google Scholar 

  26. Ino, A., Mizokawa, T., Kobayashi, K., Fujimori, A., Sasagawa, T., Kimura, T., Kishio, K., Tamasaku, K., Eisaki, H., Uchida, S.: Doping dependent density of states and pseudogap behavior in \(\text{ La }_{2-{\rm x}}\text{ Sr }_{{\rm x}}\text{ CuO }_{4}\). Phys. Rev. Lett. 81, 2124 (1998)

    Article  Google Scholar 

  27. Walz, F.: The Verwey transition—a topical review. J. Phys.: Condens. Matter. 14, R285 (2002)

    Google Scholar 

  28. Dzhumanov, S.: Theory of conventional and unconventional superconductivity in the high-\(\text{ T }_{\rm c}\) cuprates and other systems. Nova Science, New York (2013)

    Google Scholar 

  29. Mott, N.F., Davis, E.A.: Electronic processes in noncrystalline materials. Mir, Moskow (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Khudayberdiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhumanov, S., Khudayberdiev, Z.S. Anderson metal–insulator transition in doped polar cuprates. Quantum Stud.: Math. Found. 5, 75–81 (2018). https://doi.org/10.1007/s40509-017-0134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-017-0134-x

Keywords

Navigation