Advertisement

Conventional/unconventional superconductivity in high-pressure hydrides and beyond: insights from theory and perspectives

  • Luciano PietroneroEmail author
  • Lilia Boeri
  • Emmanuele Cappelluti
  • Luciano Ortenzi
Regular Paper

Abstract

The observation of a superconducting critical temperature \(T_\mathrm{c}\) exceeding 200K in ultra-dense hydrogen sulfide has demonstrated that high-\(T_\mathrm{c}\) superconductivity can be achieved also in compounds where the superconducting pairing is mediated by phonons. This poses interesting challenges and opportunities. In particular, in this paper, we present a theoretical overview of the following points:
  • Density functional theory has been quite effective in predicting various structures and this was the first time that theory has been successful in predicting novel superconductors. Along this line, we use DFT and many body theory to discuss possible strategies to search for new high-\(T_\mathrm{c}\) superconductors in light-element compounds at high pressures [20, 34, 36, 37, 43].

  • The microscopic key elements for high \({T}_\mathrm{c}\) seem to be a high phonon frequency, a peak in the density of states, a large el-ph coupling due to strong bonds, and the avoidance of lattice instabilities for very large couplings. The first two points lead to an appreciable Migdal parameter and to the possibility that non-adiabatic effects may require the generalization of the standard Migdal–Eliashberg theory of superconductivity [32, 33, 45].

  • In this perspective, it would be important to locate these materials in the Uemura diagram and to measure isotope effect for \({T}_\mathrm{c}\) but also for the effective electron mass and the magnetic susceptibility [31], where the standard ME theory would give zero effect.

  • The possibility of going beyond ME theory adds a new dimension also in the perspective of exporting these concepts to other materials at ambient or low pressure. For example, carbon compounds have a phonon frequency similar to the hydrides and the coupling can also be strong. This points to a search towards fullerene, graphene, or doped graphane. In these materials, especially fullerene, the Fermi energy is very small and the system is certainly in the non-adiabatic regime [31, 32, 33, 45].

Keywords

\(\hbox {H}_3\hbox {S}\) High \({T}_c\) superconductivity Hydrides 

References

  1. 1.
    Akashi, R., Kawamura, M., Tsuneyuki, S., Nomura, Y., Arita, R.: First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides. Phys. Rev. B. (2015). doi: 10.1103/physrevb.91.224513 Google Scholar
  2. 2.
    Akashi, R., Sano, W., Arita, R., Tsuneyuki, S.: Emergent magnéli-type crystal phases and their mixture in pressurized sulfur hydride. Novel Supercond. Mater. (2017). doi: 10.1515/nsm-2017-0004 Google Scholar
  3. 3.
    Allen, P.B., Mitrović, B.: Theory of superconducting tc. Solid State Phys. 37, 1–92 (1983)CrossRefGoogle Scholar
  4. 4.
    An, J.M., Pickett, W.E.: Superconductivity ofmgb2: covalent bonds driven metallic. Phys. Rev. Lett. 86(19), 4366–4369 (2001). doi: 10.1103/physrevlett.86.4366 CrossRefGoogle Scholar
  5. 5.
    Ashcroft, N.W.: Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21(26), 1748–1749 (1968). doi: 10.1103/physrevlett.21.1748 CrossRefGoogle Scholar
  6. 6.
    Ashcroft, N.W.: Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. (2004). doi: 10.1103/physrevlett.92.187002 Google Scholar
  7. 7.
    Bednorz, J.G., Müller, K.A.: Possible hightc superconductivity in the ba–la–cu–o system. Z. Phys. B Condens. Matter 64(2), 189–193 (1986)CrossRefGoogle Scholar
  8. 8.
    Bernstein, N., Hellberg, C.S., Johannes, M.D., Mazin, I.I., Mehl, M.J.: What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 91, 060511 (2015). doi: 10.1103/PhysRevB.91.060511 CrossRefGoogle Scholar
  9. 9.
    Boeri, L., Kortus, J., Andersen, O.K.: Three-dimensionalmgb2-type superconductivity in hole-doped diamond. Phys. Rev. Lett. (2004). doi: 10.1103/physrevlett.93.237002 Google Scholar
  10. 10.
    Bozovic, I., Brown, J.A.: Following v.l. ginzburg: On the road to room temperature superconductivity. In: 2nd Annual International Workshop, Towards Room Temperature Superconductivity: SUPERHYDRIDES and MORE (2017)Google Scholar
  11. 11.
    Bustarret, E., Marcenat, C., Achatz, P., Kacmarcik, J., Lévy, F., Huxley, A., Ortéga, L., Bourgeois, E., Blase, X., Débarre, D., et al.: Superconductivity in doped cubic silicon. Nature 444(7118), 465 (2006)CrossRefGoogle Scholar
  12. 12.
    Carbotte, J.: Properties of boson-exchange superconductors. Rev. Mod. Phys. 62(4), 1027 (1990)CrossRefGoogle Scholar
  13. 13.
    Cohen, M.L., Anderson, P.: Comments on the maximum superconducting transition temperature. In: AIP Conference Proceedings, vol. 4, pp. 17–27 (1972)Google Scholar
  14. 14.
    Dalladay-Simpson, P., Howie, R.T., Gregoryanz, E.: Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529(7584), 63–67 (2016)CrossRefGoogle Scholar
  15. 15.
    Dias, R.P., Silvera, I.F.: Observation of the wigner-huntington transition to metallic hydrogen. Science 355(6326), 715–718 (2017)CrossRefGoogle Scholar
  16. 16.
    Drozdov, A., Eremets, M., Troyan, I.: Superconductivity above 100 k in ph3 at high pressures. arXiv preprint arXiv:1508.06224 (2015)
  17. 17.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525(7567), 7376 (2015). doi: 10.1038/nature14964 CrossRefGoogle Scholar
  18. 18.
    Duan, D., Liu, Y., Ma, Y., Shao, Z., Liu, B., Cui, T.: Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev. 4(1), 121–135 (2016)Google Scholar
  19. 19.
    Duan, D., Liu, Y., Tian, F., Li, D., Huang, X., Zhao, Z., Yu, H., Liu, B., Tian, W., Cui, T.: Pressure-induced metallization of dense (h2s)2h2 with high-tc superconductivity. Sci. Rep. 4, 6968 (2014). doi: 10.1038/srep06968 CrossRefGoogle Scholar
  20. 20.
    Durajski, A., Szczniak, R., Pietronero, L.: High-temperature study of superconducting hydrogen and deuterium sulfide. Ann. Phys. 528(5), 358364 (2015). doi: 10.1002/andp.201500316 Google Scholar
  21. 21.
    Ekimov, E.A., Sidorov, V.A., Bauer, E.D., Melnik, N.N., Curro, N.J., Thompson, J.D., Stishov, S.M.: Superconductivity in diamond. Nature 428(6982), 542–545 (2004). doi: 10.1038/nature02449 CrossRefGoogle Scholar
  22. 22.
    Eremets, M., Trojan, I., Medvedev, S., Tse, J., Yao, Y.: Superconductivity in hydrogen dominant materials: silane. Science 319(5869), 1506–1509 (2008)CrossRefGoogle Scholar
  23. 23.
    Eremets, M., Troyan, I., Drozdov, A.: Low temperature phase diagram of hydrogen at pressures up to 380 gpa. a possible metallic phase at 360 gpa and 200 k. arXiv preprint arXiv:1601.04479 (2016)
  24. 24.
    Errea, I., Calandra, M., Pickard, C.J., Nelson, J., Needs, R.J., Li, Y., Liu, H., Zhang, Y., Ma, Y., Mauri, F.: High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Revi. Lett. (2015). doi: 10.1103/physrevlett.114.157004 Google Scholar
  25. 25.
    Flores-Livas, J.A., Amsler, M., Heil, C., Sanna, A., Boeri, L., Profeta, G., Wolverton, C., Goedecker, S., Gross, E.: Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. Phys. Rev. B 93(2), 020508 (2016)CrossRefGoogle Scholar
  26. 26.
    Flores-Livas, J.A., Sanna, A., Drozdov, A.P., Boeri, L., Profeta, G., Eremets, M., Goedecker, S.: Interplay between structure and superconductivity: metastable phases of phosphorus under pressure. Phys. Rev. Mater. 1, 024802 (2017). doi: 10.1103/PhysRevMaterials.1.024802 CrossRefGoogle Scholar
  27. 27.
    Flores-Livas, J.A., Sanna, A., Grauinyt, M., Davydov, A., Goedecker, S., Marques, M.A.L.: Emergence of superconductivity in doped h2o ice at high pressure. Sci. Rep. (2017). doi: 10.1038/s41598-017-07145-4 Google Scholar
  28. 28.
    Fu, Y., Du, X., Zhang, L., Peng, F., Zhang, M., Pickard, C.J., Needs, R.J., Singh, D.J., Zheng, W., Ma, Y.: High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides. Chem. Mater. 28(6), 1746–1755 (2016)CrossRefGoogle Scholar
  29. 29.
    Ge, Y., Zhang, F., Yao, Y.: First-principles demonstration of superconductivity at 280 k in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B (2016). doi: 10.1103/physrevb.93.224513 Google Scholar
  30. 30.
    Grabowski, M., Sham, L.J.: Superconductivity from nonphonon interactions. Phys. Rev. B 29(11), 6132–6142 (1984). doi: 10.1103/physrevb.29.6132 CrossRefGoogle Scholar
  31. 31.
    Grimaldi, C., Cappelluti, E., Pietronero, L.: Isotope effect on m* in high-tc materials due to the breakdown of Migdal’s theorem. EPL (Europhys. Lett.) 42(6), 667 (1998)CrossRefGoogle Scholar
  32. 32.
    Grimaldi, C., Pietronero, L., Strässler, S.: Nonadiabatic superconductivity: electron–phonon interaction beyond Migdal’s theorem. Phys. Rev. Lett. 75(6), 1158 (1995)CrossRefGoogle Scholar
  33. 33.
    Grimaldi, C., Pietronero, L., Strässler, S.: Nonadiabatic superconductivity. ii. Generalized eliashberg equations beyond Migdal’s theorem. Phys. Rev. B 52, 10530–10546 (1995). doi: 10.1103/PhysRevB.52.10530 CrossRefGoogle Scholar
  34. 34.
    Heil, C., Boeri, L.: Influence of bonding on superconductivity in high-pressure hydrides. Phys. Rev. B (2015). doi: 10.1103/physrevb.92.060508 Google Scholar
  35. 35.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor la [o1-x f x] feas (x= 0.05- 0.12) with tc = 26 k. J. Am. Chem. Soc. 130(11), 3296–3297 (2008)CrossRefGoogle Scholar
  36. 36.
    Kokail, C., Boeri, L., von der Linden, W.: Prediction of high-tc conventional superconductivity in the ternary lithium borohydride system. arXiv preprint arXiv:1705.06977 (2017)
  37. 37.
    Kokail, C., Heil, C., Boeri, L.: Search for high-\({T}_{c}\) conventional superconductivity at megabar pressures in the lithium–sulfur system. Phys. Rev. B 94, 060502 (2016). doi: 10.1103/PhysRevB.94.060502 CrossRefGoogle Scholar
  38. 38.
    Kolmogorov, A.N., Curtarolo, S.: Prediction of different crystal structure phases in metal borides: a lithium monoboride analog to \(\text{ Mgb }_{2}\). Phys. Rev. B 73, 180501 (2006). doi: 10.1103/PhysRevB.73.180501 CrossRefGoogle Scholar
  39. 39.
    Liu, H., Naumov, I.I., Hoffmann, R., Ashcroft, N., Hemley, R.J.: Potential high-tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. 114(27), 6990–6995 (2017)CrossRefGoogle Scholar
  40. 40.
    Lüders, M., Marques, M., Lathiotakis, N., Floris, A., Profeta, G., Fast, L., Continenza, A., Massidda, S., Gross, E.: Ab initio theory of superconductivity. i. Density functional formalism and approximate functionals. Phys. Rev. B 72(2), 024,545 (2005)CrossRefGoogle Scholar
  41. 41.
    Lukas, H.L., Fries, S.G., Sundman, B., et al.: Computational Thermodynamics: The Calphad Method, vol. 131. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  42. 42.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39k in magnesium diboride. Nature 410(6824), 6364 (2001). doi: 10.1038/35065039 CrossRefGoogle Scholar
  43. 43.
    Ortenzi, L., Cappelluti, E., Pietronero, L.: Band structure and electron-phonon coupling inh3s: a tight-binding model. Phys. Rev. B (2016). doi: 10.1103/physrevb.94.064507 Google Scholar
  44. 44.
    Papaconstantopoulos, D.A., Klein, B.M., Mehl, M.J., Pickett, W.E.: Cubic h3s around 200 gpa: an atomic hydrogen superconductor stabilized by sulfur. Phys. Rev. B (2015). doi: 10.1103/physrevb.91.184511 Google Scholar
  45. 45.
    Pietronero, L., Strässler, S., Grimaldi, C.: Nonadiabatic superconductivity. i. Vertex corrections for the electron-phonon interactions. Phys. Rev. B 52, 10516–10529 (1995). doi: 10.1103/PhysRevB.52.10516 CrossRefGoogle Scholar
  46. 46.
    Quan, Y., Pickett, W.E.: Van hove singularities and spectral smearing in high-temperature superconducting h3s. Phys. Rev. B (2016). doi: 10.1103/physrevb.93.104526 Google Scholar
  47. 47.
    Rosner, H., Kitaigorodsky, A., Pickett, W.E.: Prediction of high \({T}_{c}\) superconductivity in hole-doped libc. Phys. Rev. Lett. 88, 127,001 (2002). doi: 10.1103/PhysRevLett.88.127001 CrossRefGoogle Scholar
  48. 48.
    Savini, G., Ferrari, A.C., Giustino, F.: First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys. Rev. Lett. (2010). doi: 10.1103/physrevlett.105.037002 Google Scholar
  49. 49.
    Shamp, A., Terpstra, T., Bi, T., Falls, Z., Avery, P., Zurek, E.: Decomposition products of phosphine under pressure: Ph2 stable and superconducting? J. Am. Chem. Soc. 138(6), 1884–1892 (2016)CrossRefGoogle Scholar
  50. 50.
    Struzhkin, V.V.: Superconductivity in compressed hydrogen-rich materials: pressing on hydrogen. Phys. C 514, 77–85 (2015)CrossRefGoogle Scholar
  51. 51.
    Uemura, Y., Le, L., Luke, G., Sternlieb, B., Wu, W., Brewer, J., Riseman, T., Seaman, C., Maple, M., Ishikawa, M., et al.: Basic similarities among cuprate, bismuthate, organic, chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements. Phys. Rev. Lett. 66(20), 2665 (1991)CrossRefGoogle Scholar
  52. 52.
    Wang, H., John, S.T., Tanaka, K., Iitaka, T., Ma, Y.: Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. 109(17), 6463–6466 (2012)CrossRefGoogle Scholar
  53. 53.
    Woodley, S.M., Catlow, R.: Crystal structure prediction from first principles. Nat. Mater. 7(12), 937–946 (2008). doi: 10.1038/nmat2321 CrossRefGoogle Scholar
  54. 54.
    Xie, Y., Oganov, A.R., Ma, Y.: Novel high pressure structures and superconductivity of Ca Li 2. Phys. Rev. Lett. 104(17), 177,005 (2010)CrossRefGoogle Scholar
  55. 55.
    Zurek, E., Hoffmann, R., Ashcroft, N., Oganov, A.R., Lyakhov, A.O.: A little bit of lithium does a lot for hydrogen. Proc. Natl. Acad. Sci. 106(42), 17640–17643 (2009)CrossRefGoogle Scholar

Copyright information

© Chapman University 2017

Authors and Affiliations

  • Luciano Pietronero
    • 1
    • 2
    Email author
  • Lilia Boeri
    • 1
  • Emmanuele Cappelluti
    • 2
  • Luciano Ortenzi
    • 2
  1. 1.Dipartimento di fisica“Sapienza” Universita’ di RomaRomeItaly
  2. 2.Istituto dei sistemi complessi (ISC)-CNRRomeItaly

Personalised recommendations