An ab-initio framework for discovering high-temperature superconductors

Abstract

The role of the dielectric function in superconductivity has been extensively discussed. It has been suggested that negative values of the dielectric function can serve as a mechanism of superconductivity, and that the critical temperature \(T_\mathrm{c}\) can be directly expressed in terms of the dielectric function. We survey the possibility of implementing this theory using ab-initio density functional theory (DFT) and time-dependent density functional theory (TDDFT) codes. Success will allow the prediction and study of novel superconductors to be performed efficiently on computers, revolutionizing the search for room-temperature superconductivity. Bulk aluminum is studied to test and illustrate the various components of the implementation, and to compare with previous predictions. We show the first ab-initio computation of the dielectric function of bulk aluminum, which matches to very high accuracy with experiment. However, we also see that for full implementation of the proposed methodology, further work is required, which we believe is within reach. In the spirit of engineering new materials with these tools, we also explore decorated carbon nanotubes as potential realizations of Little’s model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    In Eqs. (13) and (14) we have used the used signs opposite to those that appear in the foundational article by Botti et al. [3]. It appears that this reversed sign convention is used in DP input files (where \({\alpha }\) must be specified), so we have decided to remain consistent with DP. The resulting kernel is the same, so this is truly a matter of convention.

References

  1. 1.

    Ashcroft, N.W.: Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92(18), 187002-1-187002-4 (2004)

  2. 2.

    Aspnes, D., Studna, A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983)

    Article  Google Scholar 

  3. 3.

    Botti, S., Sottile, F., Vast, N., Olevano, V., Reining, L., Weissker, H.C., Rubio, A., Onida, G., Del Sole, R., Godby, R.W.: Long-range contribution to the exchange-correlation Kernel of time-dependent density functional theory. Phys. Rev. B 69, 155112 (2004)

    Article  Google Scholar 

  4. 4.

    Brovman, E.G., Kagan, Yu M.: Phonons in nontransition metals. Usp. Fiz. Nauk 112, 369 (1974). [Sov. Phys. Usp. 17, 125 (1974)]

    Article  Google Scholar 

  5. 5.

    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bednorz, J.G., Mueller, K.A.: Possible high-Tc superconductivity in the Ba–La–Cu–O system. Zeitschrift fur Physics B Condensed Matter 64, 189–193 (1986)

    Article  Google Scholar 

  7. 7.

    Bogoliubov, N.N., Tolmachov, V.V., Shirkov, D.V.: A new method in the theory of superconductivity. Academy of Sciences, Moscow. (1959. Consultants Bureau, New York) (1958)

  8. 8.

    Dolgov, O.V., Maksimov, E.G.: The sign of the static dielectric constant of simple metals. Pisma v Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki 28, 3–6 (1978)

    Google Scholar 

  9. 9.

    Dolgov, O.V., Kirzhnitz, D.A., Maksimov, E.G.: On an admissible sign of the static dielectric function of matter. Rev. Mod. Phys. 53, 81–94 (1981)

    Article  Google Scholar 

  10. 10.

    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nat. Lett. 525, 7376 (2015)

  11. 11.

    Duan, D., Liu, Y., Li, D., Hongyu, Yu.: Pressure-induced metallization of denze (H2S) (2)H-2 with high-T-c superconductivity. Sci. Rep. 4, 6968 (2014)

    Article  Google Scholar 

  12. 12.

    Ehrenreich, H., Philipp, H.R., Segall, B.: Optical properties of aluminum. Phys. Rev. 132, 1918–1928 (1963)

    Article  Google Scholar 

  13. 13.

    Eliashberg, G.M.: Interactions between electrons and lattice vibrations in a superconductor. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki 38, 966–974 (1960). [1960. JETP 11, 696-702]

    MathSciNet  Google Scholar 

  14. 14.

    Ginzburg, V.L.: On surface superconductivity. Phys. Lett. A 13, 101–102 (1964)

    Article  Google Scholar 

  15. 15.

    Ginzburg, V.L., et al.: High-temperature superconductivity, p. 364. Springer, Heidelberg (1982)

    Google Scholar 

  16. 16.

    Gonze, X., et al.: ABINIT: first-principles approach of materials and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009)

    Article  Google Scholar 

  17. 17.

    Gonze, X., et al.: A brief introduction to the ABINIT software package. Zeitschrift fur Kristallographie 220, 558–562 (2005)

    Google Scholar 

  18. 18.

    Kirzhnits, D.A., Maksimov, E.G., Khomskii, D.I.: The description of superconductivity in terms of the dielectric response function. J. Low Temp. Phys. 10(112), 79–93 (1973)

    Article  Google Scholar 

  19. 19.

    Lyakhov, A.O., Oganov, A.R., Stokes, H.T., Zhu, Q.: New developments in evolutionary structure prediction algorithm USPEX. Comp. Phys. Comm. 184, 11721182 (2013)

    Article  Google Scholar 

  20. 20.

    Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964)

    Article  Google Scholar 

  21. 21.

    Maksimov, E.G., Dolgov, O.V.: A note on the possible mechanisms of high-temperature superconductivity. Physics-Uspekhi 50(9), 933–937 (2007)

    Article  Google Scholar 

  22. 22.

    Marinopoulos, A.G., Reining, L., Rubio, A.: Ab initio study of the dielectric response of crystalline ropes of metallic single-walled carbon nanotubes: tube-diameter and helicity effects. Phys. Rev. B 78, 235428–9 (2008)

    Article  Google Scholar 

  23. 23.

    McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968)

    Article  Google Scholar 

  24. 24.

    Migdal, A.B.: Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 7, 996–1001 (1958). [Zh. Eksp. i Teor. Phys. 34, 1438-1446 (1958)]

    Google Scholar 

  25. 25.

    Oganov, A.R., Glass, C.W.: Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006)

    Article  Google Scholar 

  26. 26.

    Oganov, A.R., Lyakhov, A.O., Valle, M.: How evolutionary crystal structure prediction works and why. Acc. Chem. Res. 44(3), 227237 (2011)

    Article  Google Scholar 

  27. 27.

    Olevano, V.: http://www.dp-code.org/

  28. 28.

    Olevano, V., Palummo, M., Onida, G., Del Sole, R.: Exchange and correlation effects beyond the LDA on the dielectric function of silicon. Phy. Rev. B 60, 14224 (1999)

    Article  Google Scholar 

  29. 29.

    Reining, L., Olevano, V., Rubio, A., Onida, G.: Excitonic effects in solids described by time-dependent density-functional theory. Phys. Rev. Lett. 88, 066404–4 (2002)

    Article  Google Scholar 

  30. 30.

    Schuh, Bernd, Sham, L.J.: A theory of superconducting transition temperature for non-phonon interactions. J. Low Temp. Phys. 50(3/4), 391–402 (1983)

    Article  Google Scholar 

  31. 31.

    Smolyaninova, V.N., Zander, K., Gresock, T., Jensen, C., Prestigiacomo, J.C., Osofsky, M.S., Smolyaninov, I.I.: Using metamaterial nanoengineering to triple the superconducting critical temperature of bulk aluminum. Nat. Sci. Rep. 5, 15777 (2015)

    Article  Google Scholar 

  32. 32.

    Yang, C., Zhao, J., Lu, J.P.: Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes. Phys. Rev. B 66, 041403–4 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Armen Gulian for initiating, guiding, and supporting this work for many years. We are grateful to all the organizers and supporters of the 2nd Annual International Workshop, Towards Room Temperature Superconductivity: Superhydrides and more (Chapman University, Orange CA, May 8–9, 2017). We presented our results at this workshop and received very helpful feedback. In particular, we thank Paul Grant, whose talk on the KMK formulas was very influential and resulted in our plans to implement them as part of the program described in this article. Finally, we thank Valerio Olevano for communicating with us and answering our questions about the DP code and methodology. This research was supported in part by the ONR Grants N000141210768 and N000141210244.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mamikon Gulian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulian, M., Melkonyan, G. & Kasthurirengan, S. An ab-initio framework for discovering high-temperature superconductors. Quantum Stud.: Math. Found. 5, 89–101 (2018). https://doi.org/10.1007/s40509-017-0125-y

Download citation

Keywords

  • Superconductivity
  • Ab-initio
  • Dielectric
  • Density functional theory
  • Time-dependent density functional theory
  • Nanotube