Skip to main content
Log in

The matter-energy intensity distribution in a quantum gravitational system

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

The influence of the quantum nature of gravity on the distribution of matter-energy in a gravitational system with the maximally symmetric geometry is studied. The state vector of the quantum gravitational system (QGS) satisfies the set of wave equations which describes the time evolution of a quantum system in the space of quantum fields. It is shown that this state vector can be normalized to unity. The generalization of the wave equations to the domain of negative values of the cosmic scale factor is made. For the arrow of time from past to future, the state vector describes the QGS contracting for the negative values of the scale factor and expanding for its positive values. The intensity distributions of matter are calculated for two exactly solvable models of spatially closed and flat QGSs formed by dust and radiation. The analogies with the motion in time of minimum wave packet for spatially closed QGS and with the phenomenon of diffraction in optics for flat QGS are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is convenient to formulate quantum theory in terms of dimensionless variables and parameters, in which length is measured in modified units of Planck length \(l_\mathrm{P} = \sqrt{2 G \hbar / (3 \pi c^{3})}\), proper time is expressed in Planck time units \(t_\mathrm{P} = l_\mathrm{P} / c\), and mass-energy is taken in Planck mass units \(m_\mathrm{P} = \hbar / (l_\mathrm{P} c)\). The Planck density \(\rho _\mathrm{P} = 3 c^{4} / (8 \pi G l_\mathrm{P}^{2})\) is used as a unit of energy density and pressure. The scalar field is taken in \(\phi _\mathrm{P} = \sqrt{3 c^{4} / (8 \pi G)}\). Here G is Newton’s gravitational constant.

References

  1. Dirac, P.A.M.: The theory of gravitation in Hamiltonian form. Proc. R. Soc. A246, 333–343 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnowitt, R., Deser, S., Misner, C.M.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  3. DeWitt, B.S.: The quantization of geometry. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 305–318. Wiley, New York (1962)

    Google Scholar 

  4. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)

    Article  MATH  Google Scholar 

  5. Wheeler, J.A.: Superspace and nature of quantum geometrodynamics. In: DeWitt, C., Wheeler, J.A. (eds.) Battelle Rencontres, pp. 242–307. Benjamin, New York (1968)

    Google Scholar 

  6. Kuchař, K.V., Torre, C.G.: Gaussian reference fluid and interpretation of quantum geometrodynamics. Phys. Rev. D 43, 419–441 (1991)

    Article  MathSciNet  Google Scholar 

  7. Kuchař, K.V.: Time and the interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 211–314. World Scientific, Singapore (1992)

    Google Scholar 

  8. Torre, C.G.: Is general relativity an “already parametrized” theory? Phys. Rev. D 46, R3231–R3234 (1992)

    Article  Google Scholar 

  9. Isham, C.J.: Structural issues in quantum gravity. In: Francaviglia, M., Longhi, G., Lusanna, L., Sorace, E. (eds.) General Relativity and Gravitation: GR14, pp. 167–209. World Scientific, Singapore (1997). arXiv:gr-qc/9510063

  10. Brown, J.D., Marolf, D.: On relativistic material reference systems. Phys. Rev. D 53, 1835–1844 (1996). arXiv:gr-qc/9509026

  11. Kuzmichev, V.E.: Kuzmichev,V.V.: Properties of the quantum universe in quasistationary states and cosmological puzzles. Eur. Phys. J. C 23, 337–348 (2002). arXiv:astro-ph/0111438

    Article  MATH  Google Scholar 

  12. Kuzmichev, V.E., Kuzmichev, V.V.: The Big Bang quantum cosmology: the matter-energy production epoch. Acta Phys. Pol. B 39, 979–995 (2008). arXiv:0712.0464 [gr-qc]

  13. Kuzmichev, V.E., Kuzmichev, V.V.: Quantum evolution of the very early Universe. Ukr. J. Phys. 53, 837–844 (2008)

    MATH  Google Scholar 

  14. Lund, F.: Canonical quantization of relativistic balls of dust. Phys. Rev. D 8, 3253–3259 (1973)

    Article  Google Scholar 

  15. Demaret, J., Moncrief, V.: Hamiltonian formalism for perfect fluids in general relativity. Phys. Rev. D 21, 2785–2793 (1980)

    Article  MathSciNet  Google Scholar 

  16. Kuzmichev, V.E., Kuzmichev, V.V.:: Accelerating quantum Universe. Acta Phys. Pol. B 39, 2003–2018 (2008). arXiv:0712.0465 [gr-qc]

  17. Kuzmichev, V.E, Kuzmichev, V.V.: Semi-classical Universe near initial singularity. Acta Phys. Pol. B 40, 2877–2891 (2009). arXiv:0905.4142 [gr-qc]

  18. Kuzmichev, V.E., Kuzmichev, V.V.: Quantum Universe on extremely small space-time scales. Ukr. J. Phys. 55, 626–635 (2010)

    MATH  Google Scholar 

  19. Kuzmichev, V.E., Kuzmichev, V.V.: Quantum corrections to the dynamics of the expanding Universe. Acta Phys. Pol. B 44, 2051–2073 (2013). arXiv:1307.2383 [gr-qc]

  20. Kuzmichev, V.E., Kuzmichev, V.V.: The expanding Universe: change of regime. Ukr. J. Phys. 60, 664–674 (2015)

    Article  MATH  Google Scholar 

  21. Kuzmichev, V.E., Kuzmichev, V.V.: Can quantum geometrodynamics complement general relativity? Ukr. J. Phys. 61, 449–458 (2016)

    Article  MATH  Google Scholar 

  22. Patrignani, C., et al. (Particle Data Group): The review of particle physics. Chin. Phys. C 40, 100001–101808 (2016)

  23. Kuzmichev, V.V.: Quantum Friedmann universe. Yad. Fiz. 60, 1707–1719 (1997)

    Google Scholar 

  24. Kuzmichev, V.V.: Quantum Friedmann universe. Phys. Atom. Nucl. 60, 1558–1569 (1997)

    Google Scholar 

  25. Kanekar, N., Sahni, V., Shtanov, Y.: Recycling the universe using scalar fields. Phys. Rev. D 63, 083520–083529 (2001)

    Article  Google Scholar 

  26. Lyth, D.H., Riotto, A.: Particle physics models of inflation and the cosmological density perturbation. Phys. Rep. 314, 1–146 (1999)

    Article  MathSciNet  Google Scholar 

  27. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, vol. 3. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  28. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, vol. 2. Butterworth-Heinemann, Amsterdam (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Kuzmichev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmichev, V.E., Kuzmichev, V.V. The matter-energy intensity distribution in a quantum gravitational system. Quantum Stud.: Math. Found. 5, 245–255 (2018). https://doi.org/10.1007/s40509-017-0115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-017-0115-0

Keywords

Mathematics Subject Classification

Navigation