Skip to main content

Searching for an adequate relation between time and entanglement

Abstract

Today, mainstream science considers that the observer and all observed physical phenomena exist in time and space as fundamental physical realities of the universe. Nonetheless, relevant recent research shows that the time measured with clocks is merely a mathematical parameter of material change, i.e. motion which runs in space. In this picture, the existence of past, present and future is merely a mathematical one. EPR paradox is established on the misunderstanding that the observer, the measuring instrument and measured phenomena exist in space and time. In this paper the perspective is introduced that, as regards EPR-type experiments, observer and observed phenomena exist only in space which originates from a fundamental quantum vacuum which is an immediate medium of quantum entanglement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Chiou, D.W.: Timeless path integral for relativistic quantum mechanics. Class. Quantum Gravity 30(12), 125004 (2013). arXiv:1009.5436v3 [gr-qc]

  2. 2.

    Palmer, T.N.: The invariant set hypothesis: a new geometric framework for the foundations of quantum theory and the role played by gravity (2009). arXiv:0812.1148

  3. 3.

    Girelli, F., Liberati, S., Sindoni, L.: Is the notion of time really fundamental? Symmetry 3(3), 389–401 (2011). arXiv:0903.4876v1 [gr-qc]

  4. 4.

    Elze, H.-T., Schipper, O.: Time without time: a stochastic clock model. Phys. Rev. D 66, 044020 (2002)

    Article  MathSciNet  Google Scholar 

  5. 5.

    Elze, H.-T.: Quantum mechanics and discrete time from “timeless” classical dynamics. Lect. Notes Phys. 633, 196 (2003). arXiv:gr-qc/0307014v1

  6. 6.

    Elze, H.-T.: Emergent discrete time and quantization: relativistic particle with extra dimensions. Phys. Lett. A 310(2–3), 110–118 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Elze, H.-T.: Quantum mechanics emerging from “timeless” classical dynamics (2003). arXiv:quant-ph/0306096

  8. 8.

    Caticha, A.: Entropic dynamics, time and quantum theory. J. Phys. A Math. Theor. 44(22), 225303 (2011). arXiv:1005.2357v3 [quant-ph]

  9. 9.

    Prati, E.: Generalized clocks in timeless canonical formalism. J. Phys. Conf. Ser. 306(1), 012013 (2011)

  10. 10.

    Fiscaletti, D., Sorli, A.: Perspectives of the numerical order of material changes in timeless approaches in physics. Found. Phys. 45(2), 105–133 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Barbour, J., Koslowski, T., Mercati, F.: Identification of a gravitational arrow of time. PRL 113, 181101 (2014)

    Article  Google Scholar 

  12. 12.

    Krasnikov, S.: Time travel paradox. Phys. Rev. D 65, 064013 (2002)

    Article  MathSciNet  Google Scholar 

  13. 13.

    Sfarti, A.: Relativity solution for “Twin paradox”: a comprehensive solution. Indian J. Phys. 86(10), 937–942 (2012)

    Article  Google Scholar 

  14. 14.

    Sorli, A., Fiscaletti, D., Gregl, T.: New insights into Gödel’s universe without time. Phys. Essays 26(1), 113–115 (2013)

    Article  Google Scholar 

  15. 15.

    Rohrlich, D., Aharonov, Y.: Cherenkov radiation of superluminal particles. Phys. Rev. A 66, 042102 (2002)

    Article  Google Scholar 

  16. 16.

    Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  17. 17.

    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  18. 18.

    Fiscaletti, D., Sorli, A.: Nonlocality and the symmetrized quantum potential. Phys. Essays 21(4), 245–251 (2008)

    Google Scholar 

  19. 19.

    Fiscaletti, D., Sorli, A.: Three-dimensional space as a medium of quantum entanglement. Annales UMCS Sectio AAA Physica LXVII, 47–72 (2012)

  20. 20.

    Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27(12), 2885–2892 (1983)

    Article  Google Scholar 

  21. 21.

    Wootters, W.K.: Time replaced by quantum correlations. Int. J. Theor. Phys. 23(8), 701–711 (1984)

    Article  MathSciNet  Google Scholar 

  22. 22.

    Moreva, E., Brida, G., Gramegna, M., Giovannetti, V., Maccone, L., Genovese, M.: Time from quantum entanglement: an experimental illustration. Phys. Rev. A 89, 052122 (2014)

    Article  Google Scholar 

  23. 23.

    Gambini, R., Porto, R.A., Pullin, J., Torterolo, S.: Conditional probabilities with Dirac observables and the problem of time in quantum gravity. Phys. Rev. D 79, 041501(R) (2009)

    Article  MathSciNet  Google Scholar 

  24. 24.

    Gambini, R., Pintos, L.P.G., Pullin, J.: An axiomatic formulation of the Montevideo formulation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 42(4), 256–263 (2011)

    Article  MATH  Google Scholar 

  25. 25.

    Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 442–456 (1991)

    Article  MathSciNet  Google Scholar 

  26. 26.

    Vedral, V.: Time, (inverse) temperature and cosmological inflation as entanglement (2014). arXiv:1408.6965v1 [quant-ph]

  27. 27.

    Fiscaletti, D., Sorli, A.: Timeless space is a fundamental arena of quantum processes. IUP J. Phys. 3(4), 34–49 (2010)

    Google Scholar 

  28. 28.

    Fiscaletti, D., Sorli, A.S., Klinar, D.: The symmetryzed quantum potential and space as a direct information medium. Annales de la Fondation Louis de Broglie 37, 41–71 (2012)

    MATH  Google Scholar 

  29. 29.

    Fiscaletti, D., Sorli, A.: Non-local quantum geometry and three-dimensional space as a direct information medium. Quantum Matter 3(3), 200–214 (2014)

    Article  Google Scholar 

  30. 30.

    Hiley, B., Callaghan, R.: The Clifford algebra approach to quantum mechanics B: the Dirac particle and its relation to the Bohm approach (2010). arXiv:1011.4033v1 [math-ph]

  31. 31.

    Chiatti, L.: The transaction as a quantum concept. In: Licata, I. (ed.) Space-time geometry and quantum events, pp. 11–44. Nova Science Publishers, New York (2014). arXiv:1204.6636

  32. 32.

    Licata, I.: Transaction and non-locality in quantum field theory. Eur. Phys. J. Web Conf. 70 (2013). doi:10.1051/epjconf/20147000039

  33. 33.

    Licata, I., Chiatti, L.: Archaic universe and cosmological model: ’big-bang’ as nucleation by vacuum. Int. J. Theor. Phys. 49(10), 2379–2402 (2010). arXiv:1004.1544

  34. 34.

    Chiatti, L., Licata, I.: Relativity with respect to measurement: collapse and quantum events from Fock to Cramer. Systems 2(4), 576–589 (2014)

    Article  Google Scholar 

  35. 35.

    Kastner, R.: The new transactional interpretation of quantum theory: the reality of possibility. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  36. 36.

    Kastner, R.E.: On delayed choice and contingent absorber experiments. ISRN Math. Phys. 2012, 9, Article ID 617291 (2012)

  37. 37.

    Galapon, E.A., Delgado, F., Muga, J.G., Egusquiza, I.: Transition from discrete to continuous time-of-arrival distribution for a quantum particle. Phys. Rev. A 72, 042107 (2005)

  38. 38.

    Galapon, E.A.: Theory of quantum arrival and spatial wave function collapse on the appearance of particle. Proc. R. Soc. A 465, 71–86 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. 39.

    Galapon, E.A., Caballar, R.F., Bahague, Jr R.T.: Confined quantum time of arrivals. Phys. Rev. Lett. 93, 180406 (2004)

  40. 40.

    Galapon, E.A.: Theory of quantum first time of arrival via spatial confinement I: confined time of arrival operators for continuous potentials. Int. J. Mod. Phys.A 21(31), 6351–6381 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. 41.

    Einstein, A., Podolski, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

    Article  MATH  Google Scholar 

  42. 42.

    Fiscaletti, D., Sorli, A.: Bijective epistemology and space-time. Found. Sci. 20, 387–398 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  43. 43.

    Mctaggart, J.: The unreality of time. Mind 17, 456–73 (1908)

  44. 44.

    Markopoulou, F.: Space does not exist, so time can (2009). arXiv:0909.1861

  45. 45.

    Sorli, A., Fiscaletti, D., Klinar, D.: New insights into the special theory of relativity. Phys. Essays 24(2), 313–318 (2011)

    Article  Google Scholar 

  46. 46.

    Yourgrau, P.: A World Without Time: The Forgotten Legacy of Godel and Einstein. Basic Books, New York (2006)

    MATH  Google Scholar 

  47. 47.

    Barbour, J.: The nature of time (2009). arXiv:0903.3489

  48. 48.

    Tegmark, M.: The mathematical universe (2007). arXiv:0704.0646v2

  49. 49.

    Ellis, G.F.R.: Physics in the real universe: time and spacetime. Gen. Relativ. Gravit. 38(12), 1797–1824 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. 50.

    Aityan, S.K.: The notion of quantum time. Ontology Studies/Cuadernos de Ontología 12, 303–328 (2012)

    Google Scholar 

  51. 51.

    Jannes, G.: Condensed matter lessons about the origin of time. Found. Phys. 45(3), 279–294 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  52. 52.

    Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation Doklady Akad. Nauk S.S.S.R. 177(1), 70–71 (1967)

  53. 53.

    Rueda, A., Haisch, B.: Gravity and the quantum vacuum inertia hypothesis. Annalen der Physik 14(8), 479–498 (2005). arXiv:gr-qc/0504061v3.

  54. 54.

    Puthoff, H.E.: Polarizable-vacuum (PV) approach to general relativity. Found. Phys. 32(6), 927–943 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  55. 55.

    Consoli, M.: Do potentials require massless particles? Phys. Rev. Lett. B 672(3), 270–274 (2009)

    Article  MathSciNet  Google Scholar 

  56. 56.

    Consoli, M.: On the low-energy spectrum of spontaneously broken phi4 theories. Mod. Phys. Lett. A 26, 531–542 (2011)

    Article  MATH  Google Scholar 

  57. 57.

    Consoli, M.: The vacuum condensates: a bridge between particle physics to gravity? In: Licata, I., Sakaji, A. (eds.) Vision of oneness. Aracne Editrice, Roma (2011)

    Google Scholar 

  58. 58.

    Santos, E.: Quantum vacuum fluctuations and dark energy (2009). arXiv:0812.4121v2 [gr-qc]

  59. 59.

    Santos, E.: Space-time curvature induced by quantum vacuum fluctuations as an alternative to dark energy. Int. J. Theor. Phys. 50(7), 2125–2133 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  60. 60.

    Fiscaletti, D., Sorli, A.: Space-time curvature of general relativity and energy density of a three-dimensional quantum vacuum. Annales UMCS Sectio AAA Physica LXIX, 55–81 (2014)

  61. 61.

    Ghao, S.: Why gravity is fundamental (2010). arXiv:1001.3029v3

  62. 62.

    Ng, Y.J.: Holographic foam, dark energy and infinite statistics. Phys. Lett. B 657(1), 10–14 (2007)

  63. 63.

    Ng, Y.J.: Spacetime foam: from entropy and holography to infinite statistics and non-locality. Entropy 10, 441–461 (2008)

    Article  MathSciNet  Google Scholar 

  64. 64.

    Ng, Y.J.: Holographic quantum foam (2010). arXiv:1001.0411v1 [gr-qc]

  65. 65.

    Ng, Y.J.: Various facets of spacetime foam (2011). arXiv:1102.4109v1 [gr-qc]

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Davide Fiscaletti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiscaletti, D., Sorli, A. Searching for an adequate relation between time and entanglement. Quantum Stud.: Math. Found. 4, 357–374 (2017). https://doi.org/10.1007/s40509-017-0110-5

Download citation

Keywords

  • Space
  • Time
  • Observer
  • Space-time
  • Quantum vacuum
  • Entanglement
  • EPR paradox