Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon, Oxford (1958)
MATH
Google Scholar
Bender, C.M., Boettcher, S.: Real spectra in non-hermitian hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)
MathSciNet
Article
MATH
Google Scholar
Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)
MathSciNet
Article
MATH
Google Scholar
Bender, C.M., Brody, D.C., Jones, H.F.: Erratum: Complex extension of quantum mechanics. Phys. Rev. Lett. 92, 119902 (2004)
Article
Google Scholar
Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)
MathSciNet
Article
Google Scholar
Pati, A.K., Singh, U., Sinha, U.: Measuring non-Hermitian operators via weak values. Phys. Rev. A 92, 052120 (2015)
Article
Google Scholar
Mitchison, G., Jozsa, R., Popescu, S.: Sequential weak measurement. Phys. Rev. A 76, 062105 (2007)
Article
Google Scholar
Brodutch, A., Cohen, E.: Nonlocal measurements via quantum erasure. arXiv:1409.1575v2 [quant-ph] (2015)
Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)
Article
Google Scholar
Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11 (1990)
MathSciNet
Article
Google Scholar
Aharonov, Y., Botero, A.: Quantum average of weak values. Phys. Rev. A 72, 052111 (2005)
Article
Google Scholar
Zurek, W.H.: Relative state and the environment: einstein, envariance, quantum darwinism, and the existential interpretation. arXiv:0707.2832v1 [quant-ph] (2007)
Sakurai, J.J., Tuan, S.F.: Modern Quantum Mechanics, Revised edn. Addison-Wesley, Boston (1994)
Google Scholar
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Article
MATH
Google Scholar
Feynman, R.P., Leighton, R.B., Stands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Boston (1964)
Google Scholar
Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics. Springer, Berlin (1995)
MATH
Google Scholar
Busch, P., Lahti, P., Werner, R.F.: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86, 1261 (2014)
Article
Google Scholar
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)
MATH
Google Scholar
Lynch, R.: The quantum phase problem: a critical review. Phys. Rep. 256, 367–436 (1995)
MathSciNet
Article
Google Scholar
Torgerson, J.R., Mandel, L.: Is there a unique operator for the phase difference of two quantum fields? Phys. Rev. Lett. 76, 3939 (1996)
Article
Google Scholar
Yu, S.X.: Quantized phase difference. Phys. Rev. Lett. 79, 780 (1997)
Article
Google Scholar
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics (Long Island City, NY) 1, 195 (1964)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)
Article
Google Scholar
Cirel’son, B.S.: Quantum generalization of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980)
MathSciNet
Article
Google Scholar
Cabello, A.: Violating Bell’s inequality Beyond Cirel’son’s bound. Phys. Rev. Lett. 88, 060403 (2002)
MathSciNet
Article
Google Scholar
Werner, R.F., Wolf, M.M.: All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)
Article
Google Scholar
Żukowski, M., Brukner, Č.: Bell’s theorem for general N-qubit states. Phys. Rev. Lett. 88, 210401 (2002)
MathSciNet
Article
MATH
Google Scholar
Arnault, F.: A complete set of multidimensional Bell inequalities. J. Phys. A Math. Theor. 45, 255304 (2012)
MathSciNet
Article
MATH
Google Scholar