Skip to main content
Log in

Small oscillations of the pendulum, Euler’s method, and adequality

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript


Small oscillations evolved a great deal from Klein to Robinson. We propose a concept of solution of differential equation based on Euler’s method with infinitesimal mesh, with well-posedness based on a relation of adequality following Fermat and Leibniz. The result is that the period of infinitesimal oscillations is independent of their amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Schaps, D., Sherry, D., Shnider, S.: Is mathematical history written by the victors? Not. Am. Math. Soc. 60(7), 886–904 (2013). arXiv:1306.5973

  2. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Reeder, P., Schaps, D., Sherry, D., Shnider, S.: Interpreting the infinitesimal mathematics of Leibniz and Euler. J. Gen. Philos. Sci. (2016). doi:10.1007/s10838-016-9334-z

  3. Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., Nowik, T., Sherry, D., Shnider, S.: Fermat, Leibniz, Euler, and the gang: the true history of the concepts of limit and shadow. Not. Am. Math. Soc. 61(8), 848–864 (2014)

  4. Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D., Sherry, D.: Leibniz vs Ishiguro: closing a quarter-century of syncategoremania. HOPOS J. Int. Soc. Hist. Philos. Sci. 6(1) (2016). doi:10.1086/685645. arXiv:1603.07209

  5. Borovik, A., Katz, M.: Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Found. Sci. 17(3), 245–276 (2012). doi:10.1007/s10699-011-9235-x

  6. Grobman, D.: Homeomorphisms of systems of differential equations. Doklady Akademii Nauk SSSR 128, 880–881 (1959)

  7. Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11(4), 610–620 (1960)

  8. Katz, K., Katz, M.: Cauchy’s continuum. Perspect. Sci. 19(4), 426–452 (2011). arXiv:1108.4201.

  9. Katz, K., Katz, M.: A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Found. Sci. 17(1), 51–89 (2012). doi:10.1007/s10699-011-9223-1. arXiv:1104.0375

  10. Katz, M., Schaps, D., Shnider, S.: Almost equal: the method of adequality from Diophantus to Fermat and beyond. Perspect. Sci. 21(3), 283–324 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Katz, M., Sherry, D.: Leibniz’s infinitesimals: their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis 78(3), 571–625 (2013). doi:10.1007/s10670-012-9370-y. arXiv:1205.0174

  12. Keisler, H.J.: Elementary Calculus: An Infinitesimal Approach, 2d edn. Prindle, Weber & Schimidt, Boston (1986).

  13. Klein, F.: Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908)

  14. Lobry, C., Sari, T.: Non-standard analysis and representation of reality. Internat. J. Control 81(3), 517–534 (2008)

  15. Nowik, T., Katz, M.: Differential geometry via infinitesimal displacements. J. Logic Anal. 7(5), 1–44 (2015). arXiv:1405.0984

  16. Pražák, D., Rajagopal, K., Slavík, J.: A non-standard approach to a constrained forced oscillator. Preprint (2016)

  17. Robinson, A.: Non-Standard Analysis. North-Holland Publishing, Amsterdam (1966)

  18. Stroyan, K.: Advanced Calculus Using Mathematica: NoteBook Edition (2015)

  19. Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, vol. 153. American Mathematical Society, Providence (2014)

  20. Tao, T., Van Vu, V.: Sum-avoiding sets in groups. arXiv:1603.03068 (2016)

Download references


We are grateful to Jeremy Schiff for drawing our attention to the Hartman–Grobman theorem, and to Semen Kutateladze and Dalibor Pražák for some helpful suggestions. M. Katz was partially supported by the Israel Science Foundation Grant No. 1517/12.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mikhail G. Katz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanovei, V., Katz, K.U., Katz, M.G. et al. Small oscillations of the pendulum, Euler’s method, and adequality. Quantum Stud.: Math. Found. 3, 231–236 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: