Skip to main content

Spin uncertainty relation under decoherence


The evolution of a spin 1/2 particle subjected to a general Hamiltonian in interaction with its environment is considered. Using a new method, the exact solution of the spin-boson model for a general Hamiltonian is applied to investigate the dynamics of the open system. Born–Markov master equation in Caldeira–Leggett regime is used to derive an exact form of the expectation values of spin Pauli operators for a double-well potential. Subsequently, a definite form of spin uncertainty relation is calculated under the influence of the environment effects. Then, we scrutinize that how non-Unitary character of the evolution of open quantum systems can affect the traditional form of the spin uncertainty relation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453–469 (1966)

    MathSciNet  Article  MATH  Google Scholar 

  2. Weinberg, S.: Collapse of the State Vector. Phys. Rev. A 85, 062116 (2012)

  3. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  4. Dieks, D.: Modal interpretation of quantum mechanics, measurements, and macroscopic behavior. Phys. Rev. A 49, 2290–2300 (1994)

  5. Ardenghi, J.S., Lombardi, O.: The Modal-Hamiltonian Interpretation of quantum mechanics as a kind of atomic interpretation. Phys. Res. Int., 379–604 (2011)

  6. Everret, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    MathSciNet  Article  Google Scholar 

  7. Zurek, W.H.: Environment induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)

    MathSciNet  Article  Google Scholar 

  8. Castagnino, M., Lombardi, O.: Self-induced decoherence: a new approach. Stud. Hist. Philos. Mod. Phys. 35, 73–107 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  9. Ballentine, L.: Classicality without Decoherence. Found. Phys. 38, 916–922 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  10. Heisenberg, W.: Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik. Zeitschrift fÃijr Physik 43, 172–198 (1927) [English translation in (Wheeler and Zurek, 1983), pp. 62–84]

  11. Heisenberg, W.: The physical principles of the quantum theory. Dover Press, USA (1930)

  12. Shafiee, A., Tirandaz, A.: Comparison between decoherence time for a two-state spin 1/2 system with its corresponding quantum retrieval period. Cent. Eur. J. Phys. 9, 1410–1420 (2011)

    Google Scholar 

  13. Hu, B.L., Zhang, Y.: Uncertainty relation for an open quantum system. Int. J. Mod. Phys. A10, 4537–4562 (1995)

    Article  MATH  Google Scholar 

  14. Anastopoulos, Ch., Halliwell, J.J.: Generalized uncertainty relations and long-time limits for quantum Brownian motion models. Phys. Rev. D 51, 6870–6885 (1995)

    MathSciNet  Article  Google Scholar 

  15. Bosyk, G.M., Portesi, M., Holik, F., Plastino, A.: On the connection between complementarity and uncertainty principles in the Mach-Zehnder interferometric setting. Phys. Scripta 83, 065002 (2013)

    Article  Google Scholar 

  16. Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003)

    Article  Google Scholar 

  17. Xiao-Feng, P., Yuan-Ping, F.: Quantum mechanics in non-linear systems, Ch. 6. World-Scientific Press (2004)

  18. Blume-Kohout, R., Zurek, W.H.: Quantum Darwinism: entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys. Rev. A 73, 062310 (2006)

    Article  Google Scholar 

  19. Schlosshauer, M.: Decoherence and the quantum to classical transition, ch. 4. Springer, New York (2007)

  20. Ballentine, L.: Quantum mechanics: a modern development. Simon Fraser University, Canada (1998)

  21. Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)

  22. Hu, B.L., Paz, J.P., Zang, Y.: Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D 45, 2843–2861 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  23. Grabert, H., Schramm, P.: Quantum Brownian motion: the functional integral approach. Phys. Rev. A 168, 115–207 (1988)

    MathSciNet  Google Scholar 

  24. Puri, R.P.: Mathematical methods of quantum optics. Springer, New York (2001)

  25. Leggett, A.J., et al.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59 (1987)

  26. Zurek, W.H., Paz, J.P.: Decoherence from Spin Environment. Phys. Rev. A 72, 0522113 (2005)

    Google Scholar 

  27. Lombardo, F.C., Villar, P.I.: Nonunitary geometric phases: a qubit coupled to an environment with random noise. Phys. Rev. A 89 (2014)

  28. Solinas, P., Mottonen, M., Salmilehto, J., Pekola, J.P.: Decoherence of adiabatically steered quantum systems. Phys. Rev. B 82, 134517 (2010)

    Article  Google Scholar 

  29. Leuenberger, M.N., Loss, D.: Quantum computing in molecular magnets. Nature 410, 789–793 (2001)

    Article  Google Scholar 

  30. Trost, J., Hornberger, K.: Hund’s paradox and the collisional stabilization of chiral molecules. Phys. Rev. Lett. 103, 023202 (2009)

  31. Mathai, A.M.: A handbook of generalized special functions for statistical and physical sciences. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  32. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Phys. A 121, 587–616 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  33. Sakurai, J.J.: Modern quantum mechanics, revised edition. Addison-Wesley Publishing Company, Boston (1993)

  34. Dumcke, R., Spohn, H.: The proper form of the generator in the weak-coupling limit. Z. Phys. B 34, 419422 (1979)

    Google Scholar 

  35. Karrlein, R., Grabert, H.: Exact time evolution and master equations for the damped harmonic oscillator. Phys. Rev. A 55, 153–164 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Arash Tirandaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tirandaz, A., Shafiee, A. Spin uncertainty relation under decoherence. Quantum Stud.: Math. Found. 3, 189–201 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Open quantum system
  • Decoherence
  • Double-well potential
  • Spin uncertainty relation