Skip to main content

Advertisement

Log in

New Era of TB Drug Discovery and Its Impact on Disease Management

  • Mycobacterial Infections (H Bach, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Tuberculosis (TB) is a devastating infectious disease that continues to plague the world, despite improved hygiene, massive vaccination efforts and an arsenal of chemotherapeutic agents. Mycobacterium tuberculosis (Mtb), the causative agent of TB, is a slow-growing bacterium that naturally resists most currently known antibiotics. Emergences of ever-increasing drug-resistant Mtb strains threaten our ability to control the disease. Unfortunately, lethargic drug development efforts led to the approval of only one new TB drug in the last 50 years by the US Food and Drug Administration. This dismal progress warrants a re-evaluation of approaches and methods for new TB drug discovery. Although successful in the past, the continuous use of in vitro drug discovery methods eroded recent attempts towards TB drug discovery, caused by a pathogen that inhabits human cells. Advances in recent years include the development of new intracellular screening protocols using relevant disease models. Pilot studies have yielded new lead compounds filling the pipeline for further development. Furthermore, these studies have revealed new insights to forecast changes in diagnostics and chemotherapies against this notorious infectious agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization. Global tuberculosis report 2015. 2016. http://www.who.int/tb/publications/global_report/en/. Accessed Sept 2016.

  2. Hmama Z, Pena-Diaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev. 2015;264(1):220–32. doi:10.1111/imr.12268.

    Article  CAS  PubMed  Google Scholar 

  3. Watt CJ, Hosseini SM, Lönnroth K, Williams BG, Dye C. Chapter 3—the global epidemiology of tuberculosis. Tuberculosis. Edinburgh: W.B. Saunders; 2009. p. 17–27.

  4. Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 2007;5(1):39–47. doi:10.1038/nrmicro1538.

    Article  CAS  PubMed  Google Scholar 

  5. Donald PR, McIlleron H. Chapter 59—antituberculosis drugs. Tuberculosis. Edinburgh: W.B. Saunders; 2009. p. 608–17.

  6. Grzemska M. Chapter 62—tuberculosis drug therapy in adults. Tuberculosis. Edinburgh: W.B. Saunders; 2009. p. 638–48.

  7. Marks SM, Flood J, Seaworth B, Hirsch-Moverman Y, Armstrong L, Mase S, et al. Treatment practices, outcomes, and costs of multidrug-resistant and extensively drug-resistant tuberculosis, United States, 2005–2007. Emerg Infect Dis. 2014;20(5):812–21. doi:10.3201/eid2005.131037.

    Article  PubMed  PubMed Central  Google Scholar 

  8. The use of bedaquiline in the treatment of multidrug-resistant tuberculosis: Interim Policy Guidance. 2013. http://apps.who.int/iris/bitstream/10665/84879/1/9789241505482_eng.pdf. Accessed Sept 2016.

  9. Swindells S. New drugs to treat tuberculosis. F1000 Med Rep. 2012;4:12. doi:10.3410/M4-12.

    PubMed  PubMed Central  Google Scholar 

  10. Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC. Novel drugs against tuberculosis: a clinician’s perspective. Eur Respir J. 2015;45(4):1119–31. doi:10.1183/09031936.00162314.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen J. Infectious disease. Approval of novel TB drug celebrated—with restraint. Science. 2013;339(6116):130. doi:10.1126/science.339.6116.130.

    Article  CAS  PubMed  Google Scholar 

  12. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–44. doi:10.1038/31159.

    Article  CAS  PubMed  Google Scholar 

  13. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29–40. doi:10.1038/nrd2201.

    Article  CAS  PubMed  Google Scholar 

  14. Poirier V, Av-Gay Y. Mycobacterium tuberculosis modulators of the macrophage’s cellular events. Microbes Infect. 2012;14(13):1211–9. doi:10.1016/j.micinf.2012.07.001.

    Article  CAS  PubMed  Google Scholar 

  15. Wallis RS, Hafner R. Advancing host-directed therapy for tuberculosis. Nat Rev Immunol. 2015;15(4):255–63. doi:10.1038/nri3813.

    Article  CAS  PubMed  Google Scholar 

  16. Wallis RS, Johnson JL. Chapter 70—immunotherapy of tuberculosis. Tuberculosis. Edinburgh: W.B. Saunders; 2009. p. 718–26.

  17. Zumla A, Maeurer M, Chakaya J, Hoelscher M, Ntoumi F, Rustomjee R, et al. Towards host-directed therapies for tuberculosis. Nat Rev Drug Discov. 2015;14(8):511–2. doi:10.1038/nrd4696.

    Article  CAS  PubMed  Google Scholar 

  18. Guler R, Brombacher F. Host-directed drug therapy for tuberculosis. Nat Chem Biol. 2015;11(10):748–51. doi:10.1038/nchembio.1917.

    Article  CAS  PubMed  Google Scholar 

  19. Bosnar M, Kelneric Z, Munic V, Erakovic V, Parnham MJ. Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother. 2005;49(6):2372–7. doi:10.1128/AAC.49.6.2372-2377.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Labro MT. Intracellular bioactivity of macrolides. Clin Microbiol Infect. 1996;1 Suppl 1:S24–30.

    Article  PubMed  Google Scholar 

  21. Pascual A, Rodriguez-Bano J, Ballesta S, Garcia I, Perea EJ. Azithromycin uptake by tissue cultured epithelial cells. J Antimicrob Chemother. 1997;39(2):293–5.

    Article  CAS  PubMed  Google Scholar 

  22. Cade CE, Dlouhy AC, Medzihradszky KF, Salas-Castillo SP, Ghiladi RA. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Protein Sci. 2010;19(3):458–74. doi:10.1002/pro.324.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rouse DA, Li Z, Bai GH, Morris SL. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995;39(11):2472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torres JN, Paul LV, Rodwell TC, Victor TC, Amallraja AM, Elghraoui A, et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg Microbes Infect. 2015;4(7), e42. doi:10.1038/emi.2015.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994;263(5144):227–30.

    Article  CAS  PubMed  Google Scholar 

  26. • Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe. 2008;3(5):316–22. doi:10.1016/j.chom.2008.03.008. Evidences that showcase Mtb manipulation of host processes.

    Article  CAS  PubMed  Google Scholar 

  27. • Bach H, Wong D, Av-Gay Y. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J. 2009;420(2):155–60. Evidences that showcase Mtb manipulation of host processes.

    Article  CAS  PubMed  Google Scholar 

  28. • Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A. 2011;108(48):19371–6. doi:10.1073/pnas.1109201108. Evidences that showcase Mtb manipulation of host processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. • Hu D, Wu J, Wang W, Mu M, Zhao R, Xu X, et al. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7. Biochem Biophys Res Commun. 2015;461(2):401–7. doi:10.1016/j.bbrc.2015.04.051. Evidences that showcase Mtb manipulation of host processes.

    Article  CAS  PubMed  Google Scholar 

  30. • Puri RV, Reddy PV, Tyagi AK. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS ONE. 2013;8(7):e70514. doi:10.1371/journal.pone.0070514. Evidences that showcase Mtb manipulation of host processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saleh MT, Belisle JT. Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol. 2000;182(23):6850–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011;7(9), e1002251. doi:10.1371/journal.ppat.1002251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, et al. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol. 2004;52(6):1691–702. doi:10.1111/j.1365-2958.2004.04085.x.

    Article  CAS  PubMed  Google Scholar 

  34. Ventura M, Rieck B, Boldrin F, Degiacomi G, Bellinzoni M, Barilone N, et al. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol Microbiol. 2013;90(2):356–66. doi:10.1111/mmi.12368.

    CAS  PubMed  Google Scholar 

  35. Grundner C, Cox JS, Alber T. Protein tyrosine phosphatase PtpA is not required for Mycobacterium tuberculosis growth in mice. FEMS Microbiol Lett. 2008;287(2):181–4. doi:10.1111/j.1574-6968.2008.01309.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang M, Gong J, Lin Y, Barnes PF. Growth of virulent and avirulent Mycobacterium tuberculosis strains in human macrophages. Infect Immun. 1998;66(2):794–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. •• Sorrentino F, Gonzalez Del Rio R, Zheng X, Presa Matilla J, Torres Gomez P, Martinez Hoyos M, et al. Development of an intracellular screen for new compounds able to inhibit Mycobacterium tuberculosis growth in human macrophages. Antimicrob Agents Chemother. 2015;60(1):640–5. doi:10.1128/AAC.01920-15. Side-by-side comparison of luminescence-based and high-content screening methods.  Results demontrated strengths of intracellular screening methods over traditional in vitro MIC.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brodin P, Christophe T. High-content screening in infectious diseases. Curr Opin Chem Biol. 2011;15(4):534–9. doi:10.1016/j.cbpa.2011.05.023.

    Article  CAS  PubMed  Google Scholar 

  39. Brodin P, DelNery E, Soleilhac E. High content screening in chemical biology: overview and main challenges. Med Sci (Paris). 2015;31(2):187–96. doi:10.1051/medsci/20153102016.

    Article  Google Scholar 

  40. •• Christophe T, Jackson M, Jeon HK, Fenistein D, Contreras-Dominguez M, Kim J, et al. High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 2009;5(10):e1000645. doi:10.1371/journal.ppat.1000645. Application of high-content screening identified a hit compound.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fenistein D, Lenseigne B, Christophe T, Brodin P, Genovesio A. A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening. Cytometry A. 2008;73(10):958–64. doi:10.1002/cyto.a.20627.

    Article  CAS  PubMed  Google Scholar 

  42. • Queval CJ, Song OR, Delorme V, Iantomasi R, Veyron-Churlet R, Deboosere N et al. A microscopic phenotypic assay for the quantification of intracellular mycobacteria adapted for high-throughput/high-content screening. J Vis Exp. 2014(83):e51114. doi:10.3791/51114. First method publication on high-content screening.

  43. Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol. 2010;28(5):237–45. doi:10.1016/j.tibtech.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  44. Mattiazzi Usaj M, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ. High-content screening for quantitative cell biology. Trends Cell Biol. 2016;26(8):598–611. doi:10.1016/j.tcb.2016.03.008.

    Article  CAS  PubMed  Google Scholar 

  45. •• Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med. 2013;19(9):1157–60. doi:10.1038/nm.3262. Application of high-content screening identified a hit compound that is currently in clinical trials.

    Article  CAS  PubMed  Google Scholar 

  46. Kang S, Kim RY, Seo MJ, Lee S, Kim YM, Seo M, et al. Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. J Med Chem. 2014;57(12):5293–305. doi:10.1021/jm5003606.

    Article  CAS  PubMed  Google Scholar 

  47. Drug Pipeline: Q203-Novel anti-TB agent. 2015. http://www.newtbdrugs.org/project.php?id=176. Accessed 11-Sept-2016 2016.

  48. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13(10):722–37. doi:10.1038/nri3532.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, et al. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell. 2010;140(5):731–43. doi:10.1016/j.cell.2010.02.012.

    Article  CAS  PubMed  Google Scholar 

  50. •• Lam KK, Zheng X, Forestieri R, Balgi AD, Nodwell M, Vollett S, et al. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLoS Pathog. 2012;8(5):e1002691. doi:10.1371/journal.ppat.1002691. Application of luminescence-based screening identified a compound that eliminates intracellular Mtb by stimulating autophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. •• Stanley SA, Barczak AK, Silvis MR, Luo SS, Sogi K, Vokes M, et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog. 2014;10(2):e1003946. doi:10.1371/journal.ppat.1003946. Application of high-content screening showing intracellular Mtb can be reduced by manipulating multiple host signal pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  52. •• VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog. 2015;11(2):e1004679. doi:10.1371/journal.ppat.1004679. Application of fluorescence-based method identified compounds inhibiting Mtb metabolism only in an intracellular environment.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science. 2000;288(5471):1647–50.

    Article  CAS  PubMed  Google Scholar 

  54. Aldridge BB, Keren I, Fortune SM. The spectrum of drug susceptibility in mycobacteria. Microbiol Spectr. 2014;2(5). doi:10.1128/microbiolspec.MGM2-0031-2013

  55. • Silva-Miranda M, Ekaza E, Breiman A, Asehnoune K, Barros-Aguirre D, Pethe K, et al. High-content screening technology combined with a human granuloma model as a new approach to evaluate the activities of drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015;59(1):693–7. doi:10.1128/AAC.03705-14. High-content screening method adapted for granuloma model.

    Article  PubMed  Google Scholar 

  56. • Schaaf K, Hayley V, Speer A, Wolschendorf F, Niederweis M, Kutsch O, et al. A macrophage infection model to predict drug efficacy against mycobacterium tuberculosis. Assay Drug Dev Technol. 2016;14(6):345–54. doi:10.1089/adt.2016.717. High-content screening method adapted for granuloma model.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossef Av-Gay PhD.

Ethics declarations

Conflict of Interest

Xingji Zheng declares that he has no conflict of interest. Yossef Av-Gay declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mycobacterial Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Av-Gay, Y. New Era of TB Drug Discovery and Its Impact on Disease Management. Curr Treat Options Infect Dis 8, 299–310 (2016). https://doi.org/10.1007/s40506-016-0098-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-016-0098-0

Keywords

Navigation