Economic Theory Bulletin

, Volume 5, Issue 2, pp 127–137 | Cite as

Externalities in economies with endogenous sharing rules

  • Philippe BichEmail author
  • Rida Laraki
Research Article


Endogenous sharing rules were introduced by Simon and Zame (Econometrica 58(4):861–872, 1990) to model payoff indeterminacy in discontinuous games. They prove the existence in every compact strategic game of a mixed Nash equilibrium and an associated sharing rule. We extend their result to economies with externalities (Arrow and Debreu in Econometrica 22(3):265–290, 1954) where, by definition, players are restricted to pure strategies. We also provide a new interpretation of payoff indeterminacy in Simon and Zame’s model in terms of preference incompleteness.


Abstract economies Generalized games Endogenous sharing rules Walrasian equilibrium Incomplete and discontinuous preferences Better reply security 

JEL Classification

C02 C62 C72 D50 


  1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954)CrossRefGoogle Scholar
  2. Aumann, R.J.: Utility theory without the completeness axiom. Econometrica 30(3), 445–462 (1962)CrossRefGoogle Scholar
  3. Barelli, P., Meneghel, I.: A note on the equilibrium existence problem in discontinuous games. Econometrica 81(2), 813–824 (2013)CrossRefGoogle Scholar
  4. Bich, P., Laraki, R.: A unified approach to equilibrium existence in discontinuous strategic games. Preprint: halshs-00717135 (2012)Google Scholar
  5. Bich, P., Laraki, R.: On the existence of approximate equilibria and sharing rule solutions in discontinuous games. Theor. Econ. 12(1), 79–108 (2017)Google Scholar
  6. Carmona, G.: An existence result for discontinuous games. J. Econ. Theory 144(3), 1333–1340 (2009)CrossRefGoogle Scholar
  7. Carmona, G.: Understanding some recent existence results for discontinuous games. Econ. Theory 48(1), 31–45 (2011)CrossRefGoogle Scholar
  8. Carmona, G., Podczeck, K.: Existence of Nash equilibrium in ordinal games with discontinuous preferences. Econ. Theory 61(3), 457–478 (2016)CrossRefGoogle Scholar
  9. Evren, Ö., Ok, E.A.: On the multi-utility representation of preference relations. J. Math. Econ. 47(4–5), 554–563 (2011)CrossRefGoogle Scholar
  10. Gale, D., Mas-Colell, A.: An equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 2(1), 9–15 (1975)CrossRefGoogle Scholar
  11. He, W., Yannelis, N.C.: Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences. Econ. Theory 61(3), 497–513 (2016)CrossRefGoogle Scholar
  12. Jackson, M.O., Simon, L.K., Swinkels, J.M., Zame, W.R.: Communication and equilibrium in discontinuous games of incomplete information. Econometrica 70(5), 1711–1740 (2002)CrossRefGoogle Scholar
  13. Reny, P.J.: On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica 67(5), 1029–1056 (1999)CrossRefGoogle Scholar
  14. Reny, P.J.: Nash equilibrium in discontinuous games. Working paper, University of Chicago (2013)Google Scholar
  15. Reny, P.: Nash equilibrium in discontinuous games. Econ. Theory 61(3), 553–569 (2016)CrossRefGoogle Scholar
  16. Shafer, W., Sonnenschein, H.: Equilibrium in abstract economies without ordered preferences. J. Math. Econ. 2(3), 345–348 (1975)CrossRefGoogle Scholar
  17. Simon, L.K., Zame, W.R.: Discontinuous games and endogenous sharing rules. Econometrica 58(4), 861–872 (1990)Google Scholar

Copyright information

© Society for the Advancement of Economic Theory 2017

Authors and Affiliations

  1. 1.Paris School of EconomicsCentre d’Economie de la Sorbonne UMR 8174, Université Paris I Panthéon/SorbonneParisFrance
  2. 2.CNRS, Université Paris-DauphinePSL Research University, LamsadeParisFrance
  3. 3.Department of EconomicsEcole PolytechniquePalaiseauFrance

Personalised recommendations