Economic Theory Bulletin

, Volume 4, Issue 1, pp 95–109 | Cite as

Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions

  • Ennio Bilancini
  • Leonardo BoncinelliEmail author
Research Article


In this paper, we study games where the space of players (or types, if the game is one of incomplete information) is atomless and payoff functions satisfy the property of strict single crossing in players (types) and actions. Under an additional assumption of quasisupermodularity in actions of payoff functions and mild assumptions on the player (type) space—partially ordered and with sets of uncomparable players (types) having negligible size—and on the action space—lattice, second countable and satisfying a separation property with respect to the ordering of actions—we prove that every Nash equilibrium is essentially strict. Furthermore, we show how our result can be applied to incomplete information games, obtaining the existence of an evolutionary stable strategy, and to population games with heterogeneous players.


Single crossing Strict Nash Pure Nash Monotone Nash Incomplete information ESS 

JEL Classification




We are particularly indebted to an associate editor and four anonymous referees for their useful suggestions that helped us to improve the paper. All mistakes remain ours.


  1. Acemoglu, D., Jensen, M.K.: Aggregate comparative statics. Games Econ. Behav. 81, 27–49 (2013)CrossRefGoogle Scholar
  2. Alós-Ferrer, C., Ritzberger, K.: Large extensive form games. Econ. Theor. 52(1), 75–102 (2013)CrossRefGoogle Scholar
  3. Athey, S.: Single crossing properties and the existence of pure strategy equilibria in games of incomplete information. Econometrica 69, 861–889 (2001)CrossRefGoogle Scholar
  4. Balbus, Ł., Dziewulski, P., Reffett, K., Woźny, Ł.: Differential information in large games with strategic complementarities. Econ. Theory 59(1), 201–243 (2013)CrossRefGoogle Scholar
  5. Bomze, I., Pötscher, B.: Game Theoretic Foundations of Evolutionary Stability. Springer, Berlin (1989)CrossRefGoogle Scholar
  6. Carmona, G.: On the purification of Nash equilibria of large games. Econ. Lett. 85, 215–219 (2004)CrossRefGoogle Scholar
  7. Carmona, G.: Purification of Bayesian–Nash equilibria in large games with compact type and action spaces. J. Math. Econ. 44, 1302–1311 (2008)CrossRefGoogle Scholar
  8. Carmona, G., Podczeck, K.: On the existence of pure-strategy equilibria in large games. J. Econ. Theory 144, 1300–1319 (2009)CrossRefGoogle Scholar
  9. Correa, S., Torres-Martínez, J.P.: Essential equilibria of large generalized games. Econ. Theory 57(3), 479–513 (2014)CrossRefGoogle Scholar
  10. Crawford, V.P.: Nash equilibrium and evolutionary stability in large- and finite-population ‘playing the field’ models. J. Theor. Biol. 145, 83–94 (1990)CrossRefGoogle Scholar
  11. Dubey, P., Mas-Colell, A., Shubik, M.: Efficiency properties of strategies market games: an axiomatic approach. J. Econ. Theory 22(2), 339–362 (1980)CrossRefGoogle Scholar
  12. Dvoretzky, A., Wald, A., Wolfowitz, J.: Elimination of randomization in certain statistical decision procedures and zero-sum two-person games. Ann. Math. Stat. 22(1), 1–21 (1951)CrossRefGoogle Scholar
  13. Ely, J.C., Sandholm, W.: Evolution in Bayesian games I: theory. Games Econ. Behav. 53, 83–109 (2005)CrossRefGoogle Scholar
  14. Fu, H., Yu, H.: Pareto-undominated and socially-maximal equilibria in non-atomic games. J. Math. Econ. 58, 7–15 (2015)CrossRefGoogle Scholar
  15. Harsanyi, J.C.: Games with randomly disturbed payoffs. Int. J. Game Theory 2, 1–23 (1973)CrossRefGoogle Scholar
  16. Keisler, H.J., Sun, Y.: Why saturated probability spaces are necessary. Adv. Math. 221(5), 1584–1607 (2009)CrossRefGoogle Scholar
  17. Khan, M.A., Rath, K.P., Sun, Y.: The Dvoretzky–Wald–Wolfowitz theorem and purification in atomless finite-action games. Int. J. Game Theory 34(1), 91–104 (2006)CrossRefGoogle Scholar
  18. Khan, M.A., Rath, K.P., Sun, Y., Yu, H.: Large games with a bio-social typology. Journal of Economic Theory (2013a)Google Scholar
  19. Khan, M.A., Rath, K.P., Sun, Y., Yu, H.: Strategic uncertainty and the ex-post nash property in large games. Theoretical Economics 10(1), 103–129 (2015)CrossRefGoogle Scholar
  20. Khan, M.A., Rath, K.P., Yu, H., Zhang, Y.: Large distributional games with traits. Econ. Lett. 118(3), 502–505 (2013b)CrossRefGoogle Scholar
  21. Khan, M.A., Sun, Y.: Pure strategies in games with private information. J. Math. Econ. 24(7), 633–653 (1995)CrossRefGoogle Scholar
  22. Khan, M.A., Sun, Y.: Non-cooperative games with many players. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 3, pp. 1761–1808. Elsevier, Amsterdam (2002). chapter 46Google Scholar
  23. Mas-Colell, A.: On a theorem of Schmeidler. J. Math. Econ. 13, 206–210 (1984)CrossRefGoogle Scholar
  24. McAdams, D.: Isotone equilibrium in games of incomplete information. Econometrica 71, 1191–1214 (2003)CrossRefGoogle Scholar
  25. McAdams, D.: Monotone equilibrium in multi-unit actions. Rev. Econ. Stud. 73, 1039–1056 (2006)CrossRefGoogle Scholar
  26. Milgrom, P., Shannon, J.: Monotone comparative statics. Econometrica 62, 157–180 (1994)CrossRefGoogle Scholar
  27. Milgrom, P.R., Weber, R.J.: Distributional strategies for games with incomplete information. Math. Oper. Res. 10, 619–632 (1985)CrossRefGoogle Scholar
  28. Morris, S.: Purification. In: Durlauf, S., Blume, L. (eds.) The New Palgrave Dictionary of Economics, pp. 779–782. Palgrave Macmillan, New York (2008)CrossRefGoogle Scholar
  29. Oechssler, J., Riedel, F.: Evolutionary dynamics on infinite strategy spaces. Econ. Theory 17, 141–162 (2001)CrossRefGoogle Scholar
  30. Oechssler, J., Riedel, F.: On the dynamic foundation of evolutionary stability in continuous models. J. Econ. Theory 107, 223–252 (2002)CrossRefGoogle Scholar
  31. Radner, R., Rosenthal, R.W.: Private information and pure-strategy equilibria. Math. Oper. Res. 7, 401–409 (1982)CrossRefGoogle Scholar
  32. Rashid, S.: Equilibrium points of non-atomic games: asymptotic results. Econ. Lett. 12, 7–10 (1983)CrossRefGoogle Scholar
  33. Reny, P.: On the existence of monotone pure-strategy equilibria in Bayesian games. Econometrica 79(2), 499–553 (2011)CrossRefGoogle Scholar
  34. Reny, P.J., Zamir, S.: On the existence of pure strategy monotone equilibria in asymmetric first-price auctions. Econometrica 72, 1105–1125 (2004)CrossRefGoogle Scholar
  35. Riley, J.G.: Evolutionary equilibrium strategies. J. Theor. Biol. 76, 109–123 (1979)CrossRefGoogle Scholar
  36. Ritzberger, K., Weibull, J.: Evolutionary selection in normal-form games. Econometrica 63, 1371–1399 (1995)CrossRefGoogle Scholar
  37. Sandholm, W.: Evolution in Bayesian games II: stability of purified equilibria. J. Econ. Theory 136, 641–667 (2007)CrossRefGoogle Scholar
  38. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press, Cambridge (2010)Google Scholar
  39. Sandholm, W.H.: Population games and deterministic evolutionary dynamics. Handb. Game Theory 4, 703–778 (2015)Google Scholar
  40. Schmeidler, D.: Equilibrium points of non-atomic games. J. Stat. Phys. 7, 295–300 (1973)CrossRefGoogle Scholar
  41. Vickers, G., Cannings, C.: On the definition of an evolutionary stable strategy. J. Theor. Biol. 129, 349–353 (1987)CrossRefGoogle Scholar
  42. Yu, H., Zhang, Z.: Pure strategy equilibria in games with countable actions. J. Math. Econ. 43(2), 192–200 (2007)CrossRefGoogle Scholar

Copyright information

© Society for the Advancement of Economic Theory 2015

Authors and Affiliations

  1. 1.Dipartimento di Economia “Marco Biagi”Università di Modena e Reggio EmiliaModenaItaly
  2. 2.Dipartimento di Scienze per l’Economia e l’ImpresaUniversità di FirenzeFirenzeItaly

Personalised recommendations