Skip to main content
Log in

Piriformospora indica improves water stress tolerance in watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai)

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

An investigation was conducted into how the beneficial fungal root endophyte Piriformosopra indica impacts the growth and physio-biochemical attributes of two watermelon varieties, Sugarbaby and Thar Manak under varying water conditions: well-watered (75% field capacity) and water-stressed (35% field capacity). Piriformosopra indica has stimulated vegetative growth in both varieties of watermelon irrespective of the water treatments. A significantly higher root length of 31.33 cm was observed in P. indica colonized Thar Manak at 35% field capacity. Piriformosopra indica colonization helped in mitigating the increase in leaf temperature and decline in leaf gas exchange parameters, leaf pigment concentration, and relative water content induced by water stress. During water stress, the highest proline content was observed in colonized seedlings of Sugarbaby (119.46 μg g−1 fresh weight) and lowest in non-colonized Sugarbaby seedlings (60.44 μg g−1 fresh weight). Diphenyl picrylhydrazyl free radical scavenging activity and catalase activity were enhanced due to pre-treatment with P. indica. The highest free radical scavenging activity of 60.30% was observed in P. indica colonized Thar Manak at 35% field capacity and the lowest in non-colonized Thar Manak at 75% field capacity (21.79%). Accumulation of harmful reactive oxygen species like H2O2 was lower in P. indica colonized seedlings when compared with the non-colonized ones during water stress. Although both varieties benefited due to colonization, the influence of P. indica was more pronounced in the susceptible variety, Sugarbaby.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TM75-P:

Non-colonized Thar Manak at 75% field capacity (FC)

TM75 + P:

Piriformosopra indica colonized Thar Manak at 75% FC

TM35-P:

Non-colonized Thar Manak at 35% FC

TM35 + P:

Piriformosopra indica colonized Thar Manak at 35% FC

SB75-P:

Non-colonized Sugarbaby at 75% FC

SB75 + P:

Piriformosopra indica colonized Sugarbaby at 75% FC

SB35-P:

Non-colonized Sugarbaby at 35% FC

SB35 + P:

Piriformosopra indica colonized Sugarbaby at 35% FC

References

  • Abdelaziz, M. E., Atia, M. A., Abdelsattar, M., Abdelaziz, S. M., Ibrahim, T. A., & Abdeldaym, E. A. (2021). Unravelling the role of Piriformospora indica in combating water deficiency by modulating physiological performance and chlorophyll metabolism-related genes in Cucumis sativus. Horticulturae, 7(10), 399.

    Article  Google Scholar 

  • Ahmadvand, G., & Hajinia, S. (2018). Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress. Crop and Pasture Science, 69(6), 594–605.

    Article  Google Scholar 

  • Anith, K. N., Faseela, K. M., Archana, P. A., & Prathapan, K. D. (2011). Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis, 55, 11–17.

    Article  Google Scholar 

  • Ansari, W. A., Atri, N., Pandey, M., Singh, A. K., Singh, B., & Pandey, S. (2019). Influence of water stress on morphological, physiological and biochemical attributes of plants: A review. Biosciences Biotechnology Research Asia, 16(4), 697–709.

    Article  Google Scholar 

  • Aparna, K. (2023). Influence of Piriformospora indica on the growth, yield and quality of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Kerala Agricultural University, Master’s thesis.

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Auge, R. M., Sylvia, D. M., Park, S., Buttery, B. R., Saxton, A. M., Moore, J. L., & Cho, K. (2004). Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Canadian Journal of Botany, 82(4), 503–514.

    Article  Google Scholar 

  • Auge, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25(1), 13–24.

    Article  PubMed  Google Scholar 

  • Azizi, M., Fard, E. M., & Ghabooli, M. (2021). Piriformospora indica affect drought tolerance by regulation of genes expression and some morphophysiological parameters in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 287, 110260.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200.

    Article  CAS  Google Scholar 

  • Chen, W., Lin, F., Lin, K. H., Chen, C., Xia, C., Liao, Q., Chen, S. P., & Kuo, Y. W. (2022). Growth promotion and salt-tolerance improvement of Gerbera jamesonii by root colonization of Piriformospora indica. Journal of Plant Growth Regulation, 41(3), 1219–1228.

    Article  CAS  Google Scholar 

  • Das, A., Kamal, S., Shakil, N. A., Sherameti, I., Oelmuller, R., Dua, M., Tuteja, N., Johri, A. K., & Varma, A. (2012). The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant Coleus forskohlii. Plant Signaling & Behaviour, 7(1), 103–112.

    Article  CAS  Google Scholar 

  • Das, A., Prasad, R., Srivastava, R. B., Deshmukh, S., Rai, M., & Varma, A. (2013). Co-cultivation of Piriformospora indica with medicinal plants: Case studies. Soil biology (Vol. 33, pp. 149–171). Springer.

    Google Scholar 

  • Ghaffari, M. R., Mirzaei, M., Ghabooli, M., Khatabi, B., Wu, Y., Zabet-Moghaddam, M., Mohammadi-Nejad, G., Haynes, P. A., Hajirezaei, M. R., Sepehri, M., & Salekdeh, G. H. (2019). Root endophytic fungus Piriformospora indica improves water stress adaptation in barley by metabolic and proteomic reprogramming. Environmental and Experimental Botany, 157, 197–210.

    Article  CAS  Google Scholar 

  • Ghorbani, A., Razavi, S. M., Omran, V. G., & Pirdashti, H. (2018a). Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology, 20(4), 729–736.

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani, A., Razavi, S. M., Omran, V. G., & Pirdashti, H. (2018b). Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russian Journal of Plant Physiology, 65, 898–907.

    Article  CAS  Google Scholar 

  • Gill, S. S., Gill, R., Anjum, N. A., Sharma, K. K., Johri, A. K., & Tuteja, N. (2016). Piriformospora indica: Potential and significance in plant stress tolerance. Frontiers in Microbiology, 7, 184779.

    Article  Google Scholar 

  • Gong, M., Tang, M., Chen, H., Zhang, Q., & Feng, X. (2013). Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forests, 44, 399–408.

    Article  Google Scholar 

  • Gopinath, P. P., Parsad, R., Joseph, B., & Adarsh, V. S. (2020). GRAPES: General R-shiny based analysis platform empowered by statistics. Available: https://www.kaugrapes.com/home. version 1.0.0.

  • Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901–908.

    Article  CAS  PubMed  Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334.

    Article  CAS  Google Scholar 

  • Huang, Z., Zou, Z., Huang, H., He, C., Zhang, Z., Wang, H., & Li, J. (2010). Cloning, analysis and expression of a drought-related gene MeP5CS from melon. Acta Horticulturae Sinica, 37(8), 1279–1286.

    CAS  Google Scholar 

  • Johnson, J. M., Alex, T., & Oelmüller, R. (2014). Piriformospora indica: The versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. Journal of Tropical Agriculture, 52(2), 103–122.

    Google Scholar 

  • Jojy, E. T., Aruna, S., Chippy, J., Amrutha, P., & Johnson, J. M. (2020). Standardization of the medium for mass multiplication of Piriformospora indica. In: Abstracts, International E-Conference on "Multidisciplinary approaches for plant disease management in achieving sustainability in agriculture; October, 6–9, 2020, Bengaluru. College of Horticulture, Bengaluru.

  • Kaboosi, E., Ghabooli, M., & Karimi, R. (2022). Piriformospora indica inoculants enhance flowering, yield, and physiological characteristics of tomato (Lycopersicon esculentum) in different growth phases. Iranian Journal of Plant Physiology, 12(3), 4183–4194.

    Google Scholar 

  • Khalid, M., Kayani, S. I., & Tang, K. (2020). The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition. Ecotoxicology and Environmental Safety, 206, 111202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalid, M., Hassani, D., Bilal, M., Liao, J., & Huang, D. (2017). Elevation of secondary metabolites synthesis in Brassica campestris ssp. chinensis L. via exogenous inoculation of Piriformospora indica with appropriate fertilizer. PLoS One, 12(5), e0177185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, D., Yusuf, M. A., Singh, P., Sardar, M., & Sarin, N. B. (2014). Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 4(8), e1108–e1108.

    Article  Google Scholar 

  • Li, D., Bodjrenou, D. M., Zhang, S., Wang, B., Pan, H., Yeh, K. W., Lai, Z., & Cheng, C. (2021). The endophytic fungus Piriformospora indica reprograms banana to cold resistance. International Journal of Molecular Sciences, 22(9), 4973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Sheng, M., Wang, C. Y., Chen, H., Li, Z., & Tang, M. (2015). Impact of Arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under water stress and recovery. Photosynthetica, 53(2), 250–258.

    Article  CAS  Google Scholar 

  • Ma, S., Bi, Y., Zhang, Y., Wang, K., Guo, Y., & Christie, P. (2022). Thermal infrared imaging study of water status and growth of Arbuscular mycorrhizal soybean (Glycine max) under water stress. South African Journal of Botany, 146, 58–65.

    Article  CAS  Google Scholar 

  • Mensah, R. A., Li, D., Liu, F., Tian, N., Sun, X., Hao, X., Lai, Z., & Cheng, C. (2020). Versatile Piriformospora indica and its potential applications in horticultural crops. Horticultural Plant Journal, 6(2), 111–121.

    Article  Google Scholar 

  • Mo, Y., Wang, Y., Yang, R., Zheng, J., Liu, C., Li, H., Ma, J., Zhang, Y., Wei, C., & Zhang, X. (2016). Regulation of plant growth, photosynthesis, antioxidation and osmosis by an Arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Frontiers in Plant Science, 7, 644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moaveni, P. (2011). Effect of water deficit stress on some physiological traits of wheat (Triticum aestivum). Agricultural Science Research Journal, 1(1), 64–68.

    Google Scholar 

  • Naeem, M., Naeem, M. S., Ahmad, R., Ashraf, M. Y., Ihsan, M. Z., Nawaz, F., Athar, H. U. R., Ashraf, M., Abbas, H. T., & Abdullah, M. (2018). Improving drought tolerance in maize by foliar application of boron: Water status, antioxidative defense and photosynthetic capacity. Archives of Agronomy and Soil Science, 64(5), 626–639.

    Article  CAS  Google Scholar 

  • Nisha, S. K., & Sreelathakumari, I. (2020). Growth and yield of watermelon (Citrullus lanatus (Thunb.) with different levels of fertigation and drip irrigation. Journal of Krishi Vigyan, 8(2), 157–161.

    Article  Google Scholar 

  • Noctor, G., Veljovic-Jovanovic, S., & Foyer, C. H. (2000). Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling. Philosophical Transactions of the Royal Society of London B Biological Sciences, 355(1402), 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, R., Kamal, S., Sharma, P. K., Oelmuller, R., & Varma, A. (2013). Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. Journal of Basic Microbiology, 53(12), 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, R. J., Henson, J., Van-Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O., & Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2(4), 404–416.

    Article  PubMed  Google Scholar 

  • Singh, L. P., Gill, S. S., & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behaviour, 6(2), 175–191.

    Article  CAS  Google Scholar 

  • Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmüller, R., & Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology, 167(12), 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Swetha, S., & Padmavathi, T. (2020). Mitigation of water stress by Piriformospora indica in Solanum melongena L. cultivars. Proceedings of the National Academy of Sciences India Section B Biological Sciences, 90, 585–593.

    Article  CAS  Google Scholar 

  • Tanha, S. R., Ghasemnezhad, A., & Babaeizad, V. (2014). A study on the effect of endophyte fungus, Piriformospora indica, on the yield and phytochemical changes of globe artichoke (Cynara scolymus L.) leaves under water stress. International Journal of Advanced Biological and Biomedical Research, 2(6), 1907–1921.

    CAS  Google Scholar 

  • Tsai, H. J., Shao, K. H., Chan, M. T., Cheng, C. P., Yeh, K. W., Oelmüller, R., & Wang, S. J. (2020). Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signaling & Behaviour, 15(2), 1722447.

    Article  Google Scholar 

  • Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1–3), 339–366.

    Article  Google Scholar 

  • Vadassery, J., Ritter, C., Venus, Y., Camehl, I., Varma, A., Shahollari, B., Novák, O., Strnad, M., Ludwig-Müller, J., & Oelmüller, R. (2008). The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interactions, 21(10), 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Zheng, J., Ren, X., Yu, T., Varma, A., Lou, B., & Zheng, X. (2015). Effects of Piriformospora indica on the growth, fruit quality and interaction with tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant Growth Regulation, 76, 303–313.

    Article  CAS  Google Scholar 

  • Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417–425.

    Article  CAS  PubMed  Google Scholar 

  • Zarea, M. J., Chordia, P., & Varma, A. (2013). Piriformospora indica versus salt stress. Piriformospora indica: Sebacinales and their biotechnological applicatmeasions (pp. 263–281). Springer.

    Chapter  Google Scholar 

  • Zhang, M., Chen, Q., & Shen, S. (2011). Physiological responses of two jerusalem artichoke cultivars to water stress induced by polyethylene glycol. Acta Physiologiae Plantarum, 33, 313–318.

    Article  Google Scholar 

  • Zlatev, Z., & Lidon, F. C. (2012). An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24, 57–72.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our special thanks to Dr. Joy Michal Johnson (Dept. of Plant Pathology, KAU) for providing the cultures of P. indica and Dr. Santoshkumar A. V (Dept. of Forest Biology and Tree Improvement, KAU) for providing us with IRGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sangeeta Kutty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The data will be made available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyothymol, C.P., Kutty, M.S., Pradeepkumar, T. et al. Piriformospora indica improves water stress tolerance in watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai). Plant Physiol. Rep. (2024). https://doi.org/10.1007/s40502-024-00797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40502-024-00797-1

Keywords

Navigation